Transformations among molecular orbitals are often expedient or illuminating, and sometimes essential in quantum chemical contexts. In order to express the many-electron wavefunction in terms of the corresponding transformed configurations, full CI calculations used to be repeated in the transformed orbital basis. The configurational transformations can however be obtained directly, as shown by Malmqvist, by a factorization into single orbital transformations. In the present paper, a direct transformation method is presented that is based on the factorization of orbital transformations in terms of Jacobi rotations. Compared to the repetition of a CI calculation, both direct re-expansion methods drastically reduce the computational effort and increase the numerical accuracy. They are, moreover, applicable to wavefunctions whose original construction is not accessible.

1.
P. O.
Löwdin
,
Phys. Rev.
97
,
1474
(
1955
).
2.
See, e.g.,
W.
England
,
L. S.
Salmon
, and
K.
Ruedenberg
,
Top. Curr. Chem.
23
,
31
(
1971
), and references mentioned therein.
3.
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
,
Chem. Phys.
71
,
41
(
1982
);
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
,
Chem. Phys.
71
,
51
(
1982
);
K.
Ruedenberg
,
M. W.
Schmidt
,
M. M.
Gilbert
, and
S. T.
Elbert
,
Chem. Phys.
71
,
65
(
1982
).
4.
P. A.
Malmqvist
,
Int. J. Quantum Chem.
30
,
479
(
1986
);
P. A.
Malmqvist
and
B. O.
Roos
,
Chem. Phys. Lett.
155
,
189
(
1989
).
5.
V.
Fock
,
Z. Phys.
61
,
126
(
1930
).
6.
K. Ruedenberg and K. Sundberg, in Quantum Science, edited by J. L. Calais, O. Goscinski, J. Linderberg, and Y. Öhrn (Eds., Plenum, New York, 1976), p. 505;
M. G. Dombek, Ph.D. thesis, Iowa State University, 1977;
K. Ruedenberg, Report on the 1978 NRCC Workshop on Post-Hartree-Fock. Quantum Chemistry (Lawrence Berkeley Laboratory, University of California, Report. LBL-8233, UC-4, CONF-780883; 1979), p. 46.
7.
P. E. M.
Siegbahn
,
A.
Heiberg
,
B. O.
Roos
, and
B.
Levy
,
Physica Scripta (Stockholm)
21
,
323
(
1980
);
B. O.
Roos
,
P. R.
Taylor
and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
);
B. O.
Roos
,
Int. J. Quantum Chem.
14
,
175
(
1980
);
P. E. M.
Siegbahn
,
J.
Almlöf
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
8.
See, e.g.,
H. J. A.
Jensen
,
H.
Ågren
, and
P.
Jørgensen
,
J. Chem. Phys.
87
,
451
(
1987
);
H. J. A. Jensen, H. Ågren, J. Olsen, page 484, Chapter 8 in Modern Techniques in Computational Chemistry: MOTECC-90, edited by E. Clementi (ESCOM Science, Leiden, 1990), Chap. 8, p. 484;
D.
Sundholm
and
J.
Olsen
,
J. Chem. Phys.
94
,
5051
(
1991
);
H.
Ågren
,
Int. J. Quantum Chem.
39
,
455
(
1991
);
C. W.
Bauschlicher
and
S. R.
Langhoff
,
Chem. Rev.
91
,
701
(
1991
);
J.
Olsen
,
M. R.
Godefroid
,
P.
Jönssen
,
P. A.
Malmqvist
, and
C.
Froese-Fischer
,
Phys. Rev. E
52
,
4499
(
1995
);
T.
Thorsteinsson
,
D. L.
Cooper
,
J.
Gerratt
,
P. D.
Karadakov
, and
M.
Raimondi
,
Theor. Chim. Acta
93
,
343
(
1996
).
9.
R. C.
Raffenetti
and
K.
Ruedenberg
,
Int. J. Quantum Chem.
3S
,
625
(
1970
).
10.
D. K.
Hoffman
,
R. C.
Raffenetti
, and
K.
Ruedenberg
,
J. Math. Phys.
13
,
528
(
1972
).
11.
The operators eσij are, of course, expressible as iσ〉Σk(S−1)jk〈φkσ|, with Sjk=〈φjk〉. This connection with the orbital metric has however no bearing on the problems to be addressed here since the latter belong to affine and not to metric vector algebra.
12.
See, e.g., Ref. 4 above;
Ph. P.
Payne
,
J. Chem. Phys.
77
,
5630
(
1982
);
J. F.
Gouyet
,
J. Chem. Phys.
59
,
4637
(
1973
);
J. F.
Gouyet
,
J. Chem. Phys.
60
,
3690
(
1974
);
B. H.
Brandow
,
Rev. Mod. Phys.
39
,
771
(
1971
);
M.
Moshinsky
and
T. H.
Seligman
,
Ann. Phys. (Leipzig)
66
,
311
(
1971
);
J.
des Cloiseaux
,
Nucl. Phys.
20
,
321
(
1960
).
13.
For instance, this derivation is the subject of the entire Section 1.D of the book Second Quantization-Based Methods in Quantum Chemistry, by P. J. Jørgensen and J. Simons (Academic, 1981).
14.
Jacobi introduced the use of orthogonal 2×2 matrices in the context of diagonalizing symmetric matrices in 1846.
C. G. J.
Jacobi
,
Crelles Journ.
30
,
51
(
1846
).
15.
F. D. Murnaghan, Unitary and Rotation Groups (Spartan Books, Washington D.C., 1962).
16.
See, e.g., G. H. Golub and Ch. F. Van Loan, Matrix Computations (Johns Hopkins University, Baltimore, 1984) pp. 16–20.
17.
In quantum chemistry, the SVD was first introduced by
A. T.
Amos
and
G. G.
Hall
,
Proc. R. Soc. London, Ser. A
A263
,
483
(
1961
) in the context of so-called corresponding orbitals.
See also
P. O.
Löwdin
,
J. Appl. Phys.
33
,
270
(
1963
);
LH. F.
King
,
R. E.
Stanton
,
H.
Kim
,
R. E.
Wyatt
, and
R. G.
Parr
,
J. Chem. Phys.
47
,
1936
(
1967
);
B. H.
Lengsfield
,
J. A.
Jafri
,
D. H.
Phillips
, and
Ch. W.
Bauschlicher
J. Chem. Phys.
74
,
6849
(
1981
).
18.
H. J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
);
H. J.
Werner
and
P. J.
Knowles
,
Chem. Phys. Lett.
115
,
259
(
1985
).
19.
J. Ivanic (in preparation).
This content is only available via PDF.
You do not currently have access to this content.