In this paper, a methodology is introduced by which one may compute rates of nonadiabatic processes for arbitrary potential forms. This method augments the extant path-integral transition state theory approach in which information about the inherently dynamical rate process is obtained from a static analysis of a free energy surface. The present resulting formula reduces to previous single adiabatic surface results when the adiabatic surface are well separated. Numerical examples show that the method well approximates the exact results in the nonadiabatic limit and over a large range of temperatures for quadratic and for nonquadratic potentials. Corroborating these results, analysis of the rate formula for a single-oscillator spin-boson Hamiltonian in the nonadiabatic classical-limit reveals close agreement with the known exact result.

1.
C. D.
Schwieters
and
G. A.
Voth
,
J. Chem. Phys.
108
,
1055
(
1998
).
2.
J.
Cao
,
C.
Minichino
, and
G. A.
Voth
,
J. Chem. Phys.
103
,
1391
(
1995
).
3.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
105
,
6856
(
1996
).
4.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
106
,
1769
(
1997
).
5.
M. J.
Gillan
,
Phys. Rev. C
20
,
3621
(
1987
).
6.
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
).
7.
G. A.
Voth
,
Chem. Phys. Lett.
170
,
289
(
1990
).
8.
G. A.
Voth
,
J. Phys. Chem.
97
,
8365
(
1993
).
9.
G.
Mills
,
G. K.
Schenter
,
D. E.
Makarov
, and
H.
Jónsson
,
Chem. Phys. Lett.
278
,
91
(
1997
).
10.
An exception to this statement is for the spin-boson problem in which the harmonic bath may be integrated out of the problem to give an influence functional. In this case, the centroid density of the spin variable may be studied analytically and related to the known rate constant in the adiabatic and nonadiabatic regimes, although not completely satisfactorily. See,
J. N.
Gehlen
and
D.
Chandler
,
J. Chem. Phys.
97
,
4958
(
1992
);
C. H.
Mak
and
J. N.
Gehlen
,
Chem. Phys. Lett.
206
,
130
(
1993
);
R.
Egger
and
C. H.
Mak
,
J. Chem. Phys.
99
,
2541
(
1993
);
R.
Egger
,
C. H.
Mak
, and
U.
Weiss
,
J. Chem. Phys.
100
,
2651
(
1994
). It should be noted that the present methodology is intended for the study of general systems characterized by nonlinear potentials.
11.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2715
(
1980
).
12.
A. O.
Caldeira
and
A. J.
Leggett
,
Phys. Rev. Lett.
46
,
211
(
1981
);
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
13.
H.
Grabert
,
U.
Weiss
, and
P.
Hanggi
,
Phys. Rev. Lett.
52
,
2193
(
1984
).
14.
I.
Affleck
,
Phys. Rev. Lett.
46
,
388
(
1981
).
15.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw–Hill, New York, 1965), p. 276.
16.
X.
Song
and
A. A.
Stuchebrukov
,
J. Chem. Phys.
99
,
969
(
1993
).
17.
K. S.
Schweitzer
,
R. M.
Stratt
,
D.
Chandler
, and
P. G.
Wolynes
,
J. Chem. Phys.
75
,
1347
(
1981
).
18.
J. D.
Doll
,
D. L.
Freeman
, and
T. L.
Beck
,
Adv. Chem. Phys.
78
,
61
(
1990
).
19.
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
).
20.
N.
Metropolis
,
A. W.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
21.
L. I. Schiff, Quantum Mechanics (McGraw–Hill, New York, 1968).
22.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
104
,
2056
(
1996
);
M.
Pavese
,
S.
Chawla
,
D.
Lu
,
J.
Lobaugh
, and
G. A.
Voth
,
J. Chem. Phys.
107
,
7428
(
1997
);
Seogjoo
Jang
and
G. A.
Voth
,
J. Chem. Phys.
108
,
4098
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.