A simple model of an associating fluid is proposed that accounts for the fact that hydrogen bonds are highly directional and favor the formation of locally open structures. The resulting analytical equation of state reproduces the distinguishing thermodynamic features of liquid water. In contrast to previous models in which the relationship between bonding and bulk density is assumed a priori, the extent of hydrogen bonding is derived in the present work from a simple microscopic model. Furthermore, by altering the parameters which control the geometric constraints on bonding, the model is able to exhibit the two thermodynamically consistent scenarios that can explain the observed behavior of supercooled liquid water, namely the two-critical-point and singularity-free scenarios. This suggests that the two scenarios are closely related through subtle features of the hydrogen-bond geometry.

1.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
2.
J. A.
Barker
and
D.
Henderson
,
Rev. Mod. Phys.
48
,
587
(
1976
).
3.
D.
Chandler
,
J. D.
Weeks
, and
H. C.
Andersen
,
Science
220
,
787
(
1983
).
4.
F. H.
Stillinger
,
Science
209
,
451
(
1980
).
5.
M.
Grimsditch
,
Phys. Rev. Lett.
52
,
2379
(
1984
).
6.
R. G.
Della Valle
and
H. C.
Andersen
,
J. Chem. Phys.
97
,
2682
(
1992
).
7.
D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University Press, New York, 1969).
8.
C. A.
Angell
,
Annu. Rev. Phys. Chem.
34
,
593
(
1983
).
9.
P. G. Debenedetti, Metastable Liquids: Concepts and Principles (Princeton University Press, Princeton, 1996).
10.
R. J.
Speedy
and
C. A.
Angell
,
J. Chem. Phys.
65
,
851
(
1976
).
11.
G. S.
Kell
,
J. Chem. Eng. Data
12
,
66
(
1967
).
12.
D. E.
Hare
and
C. M.
Sorensen
,
J. Chem. Phys.
84
,
5085
(
1986
).
13.
O.
Mishima
,
L. D.
Calvert
, and
E.
Whalley
,
Nature (London)
314
,
76
(
1985
).
14.
O.
Mishima
,
J. Chem. Phys.
100
,
5910
(
1994
).
15.
P. H.
Poole
,
T.
Grande
,
F.
Sciortino
,
H. E.
Stanley
, and
C. A.
Angell
,
Comput. Mater. Sci.
4
,
373
(
1995
).
16.
M.-C.
Bellissent-Funel
,
Europhys. Lett.
42
,
161
(
1998
).
17.
G. P.
Johari
,
J. Chem. Phys.
105
,
7079
(
1996
).
18.
R. J.
Speedy
,
P. G.
Debenedetti
,
R. S.
Smith
,
C.
Huang
, and
B. D.
Kay
,
J. Chem. Phys.
105
,
240
(
1996
).
19.
P. H.
Poole
,
F.
Sciortino
,
U.
Essman
, and
H. E.
Stanley
,
Nature (London)
360
,
324
(
1992
).
20.
S. H.
Harrington
,
R.
Zhang
,
P. H.
Poole
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. Lett.
78
,
2409
(
1997
).
21.
H.
Tanaka
,
Nature (London)
380
,
328
(
1996
).
22.
C. J.
Roberts
and
P. G.
Debenedetti
,
J. Chem. Phys.
105
,
658
(
1996
).
23.
C. J.
Roberts
,
A. Z.
Panagiotopoulos
, and
P. G.
Debenedetti
,
Phys. Rev. Lett.
77
,
4386
(
1996
).
24.
O.
Mishima
and
H. E.
Stanley
,
Nature (London)
392
,
164
(
1998
).
25.
M. R.
Sadr-Lahijany
,
A.
Scala
,
S. V.
Buldyrev
, and
H. E.
Stanley
,
Phys. Rev. Lett.
81
,
4895
(
1998
).
26.
H. E.
Stanley
and
J.
Teixeira
,
J. Chem. Phys.
73
,
3404
(
1980
).
27.
Y.
Xie
,
K. F.
Ludwig
,
G.
Morales
,
D. E.
Hare
, and
C. M.
Sorensen
,
Phys. Rev. Lett.
71
,
2050
(
1993
).
28.
S.
Sastry
,
P. G.
Debenedetti
,
F.
Sciortino
, and
H. E.
Stanley
,
Phys. Rev. E
53
,
6144
(
1996
).
29.
L.-P.
Rebelo
,
P. G.
Debenedetti
, and
S.
Sastry
,
J. Chem. Phys.
109
,
626
(
1998
).
30.
H.
Tanaka
,
Phys. Rev. Lett.
80
,
5750
(
1998
).
31.
R. J.
Speedy
,
J. Phys. Chem.
86
,
982
(
1982
).
32.
P. H.
Poole
,
F.
Sciortino
,
T.
Grande
,
H. E.
Stanley
, and
C. A.
Angell
,
Phys. Rev. Lett.
73
,
1632
(
1994
).
33.
C. A.
Jeffery
and
P. H.
Austin
,
J. Chem. Phys.
110
,
484
(
1999
).
34.
S. S.
Borick
,
P. G.
Debenedetti
, and
S.
Sastry
,
J. Phys. Chem.
99
,
3781
(
1995
).
35.
R. A.
Heidemann
and
J. M.
Prausnitz
,
Proc. Natl. Acad. Sci. USA
73
,
1773
(
1976
).
36.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
35
(
1984
).
37.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
459
(
1986
).
38.
I.
Nezbeda
,
J. Mol. Liq.
73-4
,
317
(
1997
), and references therein.
39.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1
(
1988
).
40.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Ind. Eng. Chem. Res.
29
,
1709
(
1990
).
41.
P. J.
Smits
,
I. G.
Economou
,
C. J.
Peters
, and
J. D.
Arons
,
J. Phys. Chem.
98
,
12080
(
1994
).
42.
I. G.
Economou
and
M. D.
Donohue
,
Fluid Phase Equilibria
116
,
518
(
1996
).
43.
L. W.
Dahl
and
H. C.
Andersen
,
J. Chem. Phys.
78
,
1980
(
1983
).
44.
T. L. Hill, Statistical Mechanics: Principles and Selected Applications (Dover, New York, 1987).
45.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
46.
A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw–Hill, New York, 1984).
47.
S.
Torquato
,
Phys. Rev. E
51
,
3170
(
1995
).
48.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
31
,
369
(
1959
).
49.
H.
Reiss
and
A. D.
Hammerich
,
J. Phys. Chem.
90
,
6252
(
1986
).
50.
R. J.
Speedy
,
J. Phys. Chem.
92
,
2016
(
1988
).
51.
H.
Reiss
,
J. Phys. Chem.
96
,
4736
(
1992
).
52.
S.
Torquato
,
Phys. Rev. Lett.
74
,
2156
(
1995
).
53.
T. M.
Truskett
,
S.
Torquato
, and
P. G.
Debenedetti
,
Phys. Rev. E
58
,
7369
(
1998
).
54.
P. C.
Hemmer
and
G.
Stell
,
Phys. Rev. Lett.
24
,
1284
(
1970
);
G.
Stell
and
P. C.
Hemmer
,
J. Chem. Phys.
56
,
4274
(
1972
);
J. M.
Kincaid
,
G.
Stell
, and
E.
Goldmark
,
J. Chem. Phys.
65
,
2172
(
1976
).
55.
P. G.
Debenedetti
,
V. S.
Raghavan
, and
S. S.
Borick
,
J. Phys. Chem.
95
,
4540
(
1991
).
56.
D. H.
Rasmussen
,
A. P.
MacKenzie
,
C. A.
Angell
, and
J. C.
Tucker
,
Science
181
,
342
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.