The relationship between the diverging of classical trajectories in chaotic many-body systems, the spreading of quantum wave packets, and the validity and use of classical molecular dynamics is explored. This analysis, which is based on the semiclassical description of wave function propagation in terms of a weighted integration over a traveling fixed width coherent state basis, suggests that the exponential divergence of nearby classical trajectories in chaotic many-body systems should result in the rapid delocalization of an initially localized quantum wave packet describing the state of the system. Thus the justification for the use of classical molecular dynamics procedures for these supposedly classical systems cannot be based on the picture of the system wave function remaining localized as its center follows a nearly classical trajectory. The quantum evolution of the system density, on the other hand, requires two propagators, and each of these propagators is represented as an integration over trajectories in the semiclassical picture. The interference between the contributions from these two integrations over classical trajectories focuses the analysis on the most important points in this trajectory pair space, which are shown to occur when both trajectories in the pair are the same. Given reasonable assumptions for the initial density for a system that is expected to be well described by classical molecular dynamics, and given an appropriate choice for the width of the coherent state basis which is employed in the semiclassical description, it is shown that the semiclassical expressions for time dependent observables and correlation functions reduce the purely classical expressions, despite the fact that an initially localized wave packet would rapidly delocalize for the same system.

1.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
2.
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
,
J. Chem. Phys.
84
,
326
(
1986
).
3.
M. F.
Herman
,
J. Chem. Phys.
85
,
2069
(
1986
);
M. F.
Herman
,
Chem. Phys. Lett.
275
,
445
(
1997
).
4.
B. E.
Guerin
and
M. F.
Herman
,
Chem. Phys. Lett.
286
,
361
(
1998
).
5.
A. J. Lichtenberg and M. A. Lieberman, Regular and Stochastic Motion (Springer-Verlag, New York, 1983).
6.
K. G.
Kay
,
J. Chem. Phys.
100
,
4377
(
1994
).
7.
K. G.
Kay
,
J. Chem. Phys.
101
,
2250
(
1994
).
8.
A. R.
Walton
and
D. E.
Manolopoulos
,
Mol. Phys.
87
,
961
(
1996
).
9.
G.
Campolieti
and
P.
Brumer
,
J. Chem. Phys.
109
,
2999
(
1998
).
10.
M. F.
Herman
,
J. Chem. Phys.
87
,
4779
(
1987
).
11.
J. C.
Arce
and
M. F.
Herman
,
J. Chem. Phys.
101
,
7520
(
1994
).
12.
X.
Sun
,
H.
Wang
, and
W. H.
Miller
,
J. Chem. Phys.
109
,
4190
,
7064
(
1998
).
13.
E. R.
Bittner
and
P. J.
Rossky
,
J. Chem. Phys.
103
,
8130
(
1995
);
E. R.
Bittner
and
P. J.
Rossky
,
J. Chem. Phys.
107
,
8611
(
1997
).
14.
D. F. Coker, H. S. Mei, and J. P. Ryckaert, in Classical and Quantum Dynamics in Condensed Matter Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1998), p. 539.
15.
J. L.
McWirther
,
J. Chem. Phys.
107
,
7314
(
1997
);
J. L.
McWirther
,
J. Chem. Phys.
108
,
5683
(
1998
).
J. L.
McWirther
,
J. Chem. Phys.
108
,
8279
(
1998
).
16.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
104
,
1
(
1996
).
17.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
106
,
916
(
1997
).
18.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
19.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
20.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
21.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
22.
J. S.
Bader
and
B. J.
Berne
,
J. Chem. Phys.
100
,
8359
(
1994
).
23.
J. S.
Bader
,
B. J.
Berne
, and
P.
Hanggi
,
J. Chem. Phys.
104
,
1111
(
1996
).
24.
S. A.
Egorov
and
B. J.
Berne
,
J. Chem. Phys.
107
,
6050
(
1997
).
25.
J. L.
Skinner
,
J. Chem. Phys.
107
,
8717
(
1997
).
26.
J. L.
Skinner
and
W. E.
Moerner
,
J. Phys. Chem.
100
,
13251
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.