Thermal rate constants for the H+H2S→H2+SH reaction have been calculated over a temperature range of 100–2500 K using variational transition state theory combined with the multidimensional semiclassical tunneling correction. Potential energy curves for the reaction have been calculated using the spin-projected fourth-order Mo/ller–Plesset perturbation method and quadratic configuration–interaction method with the correlation-consistent polarized valence triple-ζ basis set. The calculated rate constants agree quite well with experiment over a wide range of temperature; in particular, excellent agreement with experiment is obtained around room temperatures. We have thus succeeded in quantitatively predicting the non-Arrhenius temperature dependence of thermal rate constants for the present reaction without adjusting any potential parameters, which has been observed recently by Yoshimura et al. [Chem. Phys. Lett. 189, 199 (1992)] and by Peng, Hu, and Marshall [J. Phys. Chem. 103, 5307 (1999)].

1.
V. A.
Benderskii
,
D. E.
Makarov
, and
C. A.
Wight
, Chemical Dynamics at Low Temperatures (Wiley, New York, 1994);
V. A.
Benderskii
,
D. E.
Makarov
, and
C. A.
Wight
,
Adv. Chem. Phys.
88
,
1
(
1994
).
2.
E. I. Grigoriev and L. I. Trakhtenberg, Radiation-Chemical Processes in Solid Phase Theory and Application (CRC, Boca Raton, FL, 1996).
3.
(a)
R.
Zellner
,
J. Phys. Chem.
83
,
18
(
1979
);
(b)
A. R.
Ravishankara
,
J. M.
Nicovich
,
R. L.
Thompson
, and
F. P.
Tully
,
J. Phys. Chem.
85
,
2498
(
1981
);
(c)
K.
Mahmud
,
P.
Marshall
, and
A.
Fontijn
,
J. Chem. Phys.
88
,
2393
(
1988
);
(d)
M. A.
Ioffe
,
Y. M.
Gershenzon
,
V. B.
Rozenshtein
, and
S. Y.
Umanskii
,
Chem. Phys. Lett.
154
,
131
(
1989
);
(e)
Z.
Jiang
,
P. H.
Taylor
, and
B.
Dellinger
,
J. Phys. Chem.
96
,
8961
(
1992
);
(f)
S. K.
Farhat
,
C. L.
Morter
, and
G. P.
Glass
,
J. Phys. Chem.
97
,
12789
(
1993
);
(g)
B. J.
Opansky
and
R. S.
Leone
,
J. Phys. Chem.
100
,
19904
(
1996
).
4.
M.
Yoshimura
,
M.
Koshi
,
H.
Matsui
,
K.
Kamiya
, and
H.
Umeyama
,
Chem. Phys. Lett.
189
,
199
(
1992
).
5.
J.
Peng
,
X.
Hu
, and
P.
Marshall
,
J. Phys. Chem.
103
,
5307
(
1999
).
6.
(a)
V. D.
Mihelcic
and
R. N.
Schindler
,
Ber. Bunsenges. Phys. Chem.
74
,
1280
(
1970
);
(b)
L. T.
Cupitt
and
G. P.
Glass
,
Trans. Faraday Soc.
66
,
3007
(
1970
);
(c)
M. J.
Kurylo
,
N. C.
Peterson
, and
W.
Bran
,
J. Chem. Phys.
54
,
943
(
1971
);
(d)
H.
Rommel
and
H. I.
Schiff
,
Int. J. Chem. Kinet.
4
,
547
(
1972
);
(e)
J. N.
Bradley
,
S. P.
Trueman
,
D. A.
Whytock
, and
T. A.
Zaleski
,
J. Chem. Soc., Faraday Trans. 1
69
,
416
(
1973
);
(f)
J. E.
Nicolas
,
C. A.
Amodio
, and
M. J.
Baker
,
J. Chem. Soc., Faraday Trans. 1
75
,
1868
(
1979
);
(g)
G.
Pratt
and
D.
Rogers
,
J. Chem. Soc., Faraday Trans. 1
73
,
54
(
1977
);
(h)
D.
Husain
and
N. K. H.
Slater
,
J. Chem. Soc., Faraday Trans. 2
76
,
276
(
1980
);
(i)
P.
Roth
,
R.
Lohr
, and
U.
Barner
,
Combust. Flame
45
,
273
(
1982
);
(j)
M. A. A.
Clyne
and
Y.
Ono
,
Chem. Phys. Lett.
94
,
597
(
1983
).
7.
Y.
Kurosaki
and
T.
Takayanagi
,
J. Chem. Phys.
110
,
10830
(
1999
).
8.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, GAUSSIAN 94, Revision D.3, Gaussian, Inc., Pittsburgh, PA, 1995.
9.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
10.
M.
Head-Gordon
and
T.
Head-Gordon
,
Chem. Phys. Lett.
220
,
122
(
1994
).
11.
(a)
R.
Krishnan
and
J. A.
Pople
Int. J. Quantum Chem.
14
,
91
(
1978
);
(b)
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4244
(
1980
).
12.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
13.
(a)
D. G.
Truhlar
and
A.
Kuppermann
,
J. Am. Chem. Soc.
93
,
1840
(
1971
);
(b)
K.
Fukui
,
Acc. Chem. Res.
14
,
364
(
1981
).
14.
(a)
C.
Gonzalez
and
H. B.
Schlegel
,
J. Chem. Phys.
90
,
2154
(
1989
);
C.
Gonzalez
and
H. B.
Schlegel
, (b)
J. Phys. Chem.
94
,
5523
(
1990
).
15.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
16.
(a)
R. T.
Skodje
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Phys. Chem.
85
,
3019
(
1981
);
(b)
D. G.
Truhlar
,
A. D.
Isaacson
,
R. T.
Skodje
, and
B. C.
Garrett
,
J. Phys. Chem.
86
,
2252
(
1982
);
(c)
D. G.
Truhlar
and
B. C.
Garrett
,
Annu. Rev. Phys. Chem.
35
,
159
(
1984
);
(d) D. G. Truhlar, A. D. Isaacson, and B. C. Garrett, in Theory of Chemical Reaction Dynamics, edited by M. Bear (Chemical Rubber, Boca Raton, FL, 1985), Vol. 4, pp. 65–137;
(e)
D. G.
Truhlar
and
B. C.
Garrett
,
J. Chim. Phys.
84
,
365
(
1987
);
(f)
Y.-P.
Liu
,
G. C.
Lynch
,
T. N.
Truong
,
D.-H.
Lu
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
115
,
2408
(
1993
).
17.
S.
Takane
and
T.
Fueno
,
Bull. Chem. Soc. Jpn.
66
,
3633
(
1993
).
18.
M. W.
Chase
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
MacDonald
, and
A. N.
Syverud
,
JANAF Thermochemical Tables
, 3rd ed. [
J. Phys. Chem. Ref. Data
14
,
1
(
1985
)].
19.
S. L.
Mielke
,
G. C.
Lynch
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
J. Phys. Chem.
98
,
8000
(
1994
), and references cited therein.
20.
(a)
T. N.
Truong
,
J. Chem. Phys.
100
,
8014
(
1994
);
(b)
T. N.
Truong
and
T. J.
Evans
,
J. Phys. Chem.
98
,
9558
(
1994
);
(c)
T. N.
Truong
and
W. T.
Duncan
,
J. Chem. Phys.
101
,
7408
(
1994
);
(d)
T. N.
Truong
,
J. Chem. Phys.
102
,
5335
(
1995
);
(e)
D. T.
Duncan
,
R. L.
Bell
, and
T. N.
Truong
,
J. Comput. Chem.
19
,
1039
(
1998
);
(f)
D. K.
Maity
,
W. T.
Duncan
, and
T. N.
Truong
,
J. Phys. Chem. A
103
,
2152
(
1999
).
21.
J. C.
Corchado
,
E. L.
Coitiño
,
Y.-Y.
Chuang
,
P. L.
Fast
, and
D. G.
Truhlar
,
J. Phys. Chem. A
102
,
2424
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.