New intermolecular potential models for benzene and cyclohexane have been developed, parameterized to the vapor–liquid coexistence properties. The models utilize the Buckingham exponential-6 potential to describe nonbonded interactions. Histograms reweighting grand canonical Monte Carlo methods were used to obtain the model parameters. A new algorithm for insertion of molecules with complex molecular architectures or stiff intramolecular constraints has been developed. The algorithm is based on the creation of a reservoir of ideal chains from which structures are selected for insertion during a simulation run. The new potential models reproduce the experimental saturated liquid densities and vapor pressures to within average absolute deviations of 0.3% and 2.2%, respectively. Critical parameters are also in good agreement with experiment. The infinite dilution behavior of these two cyclic molecules in water was studied. A combination of Widom insertion and expanded ensemble techniques were used to determine the Henry’s law constant of benzene and cyclohexane in water. The results obtained have qualitatively correct temperature dependence. However, the Henry’s constant of benzene in water is overestimated and that of cyclohexane is underestimated at all temperatures by approximately a factor of 3.

1.
J. P.
Ryckaert
and
A.
Ballemans
,
Chem. Phys. Lett.
30
,
123
(
1975
).
2.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
813
(
1984
).
3.
F. H.
Stillinger
and
A.
Rahman
,
J. Chem. Phys.
60
,
1545
(
1974
).
4.
H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, and J. Hermans, in Intermolecular Forces, edited by B. Pullman (Reidel, Dordrecht, Holland, 1981).
5.
B.
Smit
,
S.
Karaborni
, and
J. I.
Siepmann
,
J. Chem. Phys.
102
,
2126
(
1995
).
6.
J. G.
Harris
K. H.
Yung
,
J. Phys. Chem.
99
,
12021
(
1995
).
7.
M. E.
Van Leeuwen
and
B.
Smit
,
J. Phys. Chem.
99
,
1831
(
1995
).
8.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
(
1998
).
9.
S. K.
Nath
,
F. A.
Escobedo
, and
J. J.
de Pablo
,
J. Chem. Phys.
108
,
9905
(
1998
).
10.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B.
103
,
6314
(
1999
).
11.
W. L.
Jorgensen
and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
110
,
1657
(
1988
).
12.
D. J.
Evans
and
R. O.
Watts
,
Mol. Phys.
32
,
93
(
1976
).
13.
M.
Claessens
,
M.
Ferrario
,
J. P.
Ryckaert
,
Mol. Phys.
50
,
217
(
1983
).
14.
P.
Linse
,
J. Am. Chem. Soc.
106
,
5425
(
1984
).
15.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
1093
(
1998
).
16.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
102
,
7470
(
1998
).
17.
A. A.
Chialvo
and
P. T.
Cummings
,
Fluid Phase Equilibria
150–151
,
73
(
1998
).
18.
R. A.
Buckingham
,
Proc. R. Soc.
168A
,
264
(
1938
).
19.
P.
Van der Ploeg
and
H. J. C.
Berendsen
,
J. Chem. Phys.
94
,
3271
(
1982
).
20.
O.
Bastiansen
,
L.
Fernholt
,
H. M.
Seip
,
H.
Kambara
,
K.
Kuchitsu
,
J. Mol. Struct.
18
,
163
(
1973
).
21.
L. R.
Dodd
and
S. I.
Sandler
,
Fluid Phase Equilibria
63
,
279
(
1991
).
22.
G. E.
Norman
and
V. S.
Filinov
,
High Temp.
7
,
216
(
1969
).
23.
D. Frenkel and B. Smit, Understanding Molecular Simulation (Academic, London, 1996).
24.
J. I.
Siepmann
,
Mol. Phys.
70
,
1145
(
1990
).
25.
J. I.
Siepmann
and
D.
Frenkel
,
Mol. Phys.
75
,
59
(
1992
).
26.
D.
Frenkel
,
G. C. A. M.
Mooij
, and
B.
Smit
,
J. Phys.: Condens. Matter
4
,
3053
(
1992
).
27.
J. J.
De Pablo
,
M.
Laso
,
U. W.
Suter
,
J. Chem. Phys.
96
,
2395
(
1992
).
28.
T. J. H.
Vlugt
,
R.
Krishna
, and
B.
Smit
,
J. Phys. Chem. B
103
,
1102
(
1999
).
29.
M. D.
Macedonia
and
E. J.
Maginn
,
Mol. Phys.
96
,
1375
(
1999
).
30.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B.
103
,
4508
(
1999
).
31.
P. H.
Verdier
and
W. H.
Stockmayer
,
J. Chem. Phys.
36
,
227
(
1962
).
32.
L. R.
Dodd
,
T. D.
Boone
, and
D. N.
Theodorou
,
Mol. Phys.
78
,
961
(
1993
).
33.
F. A.
Escobedo
and
J. J.
de Pablo
,
J. Chem. Phys.
105
,
4391
(
1996
).
34.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
35.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1989
).
36.
A. Z.
Panagiotopoulos
,
V.
Wong
, and
M. A.
Floriano
,
Macromolecules
31
,
912
(
1998
).
37.
D. N.
Theodorou
and
U. W.
Suter
,
J. Chem. Phys.
82
,
955
(
1985
).
38.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
39.
A. P.
Lyubartsev
,
A. A.
Martsinovskii
,
S. V.
Shevkunov
,
P. N.
Vorontsov-Velyaminov
,
Chem. Phys.
96
,
1776
(
1992
).
40.
A. P.
Lyubartsev
,
A.
Laaksonen
, and
P. N.
Vorontsov-Velyaminov
,
Mol. Simul.
18
,
43
(
1996
).
41.
A. P.
Lyubartsev
,
O. K.
Førrisdahl
,
A.
Laaksonen
,
J. Chem. Phys.
108
,
227
(
1998
).
42.
J. R.
Errington
,
G. C.
Boulougouris
,
I. G.
Economou
,
A. Z.
Panagiotopoulos
, and
D. N.
Theodorou
,
J. Phys. Chem. B
102
,
8865
(
1998
).
43.
B. D. Smith and R. Srivastava, Thermodynamic data for pure compounds: Part A Hydrocarbons and Ketones (Elsevier, Amsterdam, 1986).
44.
C.
Tsonopoulos
and
D.
Ambrose
,
J. Chem. Eng. Data
40
,
547
(
1995
).
45.
T. E.
Daubert
,
J. Chem. Eng. Data
41
,
365
(
1996
).
46.
http://thera.umd.edu/jerring/cyclic.
47.
V. Majer and V. Svoboda, Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation (Blackwell Scientific Publications, Oxford, 1985).
48.
N. B.
Wilding
and
A. D.
Bruce
,
J. Phys.: Condens. Matter
4
,
3087
(
1992
).
49.
N. B.
Wilding
,
Phys. Rev. E
52
,
602
(
1995
).
50.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
10914
(
1998
).
51.
C.
Tsonopoulos
and
G. M.
Wilson
,
AIChE. J.
29
,
990
(
1983
).
52.
G. C. Boulougouris, J. R. Errington, I. G. Economou, A. Z. Panagiotopoulos, and D. N. Theodorou (in preparation).
This content is only available via PDF.
You do not currently have access to this content.