The Hartree-Fock and correlation contributions to the interaction energy of the hydrogen-bonded complexes (HF)2,(HCl)2,H2OHF, HCNHF, and (H2O)2 are computed in conventional calculations employing the aug-cc-pVXZ series of basis sets at the levels of Hartree-Fock theory, second-order perturbation theory, and coupled-cluster theory with single and double excitations augmented by a perturbative triples correction. The basis set convergence of the interaction energy is examined by comparison with results obtained with an explicitly correlated wave function model. The counterpoise-corrected and uncorrected Hartree-Fock interaction energies both converge very unsystematically. The convergence of the uncorrected correlation contribution is also very unsystematic because the basis set superposition error and the error from the incomplete description of the electronic Coulomb cusp both are present. Once the former has been effectively removed by the counterpoise correction, the cusp dominates and the convergence of the counterpoise-corrected correlation contribution follows an X−3 form similar to the form for the correlation energy. Two-point extrapolated values obtained with this form are close to the basis set limit and represent a significant improvement on the unextrapolated results.

1.
M. J.
Frisch
,
J. E. D.
Bene
,
J. S.
Binkley
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
84
,
2279
(
1986
).
2.
D.
Feller
,
C. M.
Boyle
, and
E. R.
Davidson
,
J. Chem. Phys.
86
,
3424
(
1987
).
3.
K.
Szalewicz
,
S. J.
Cole
,
W.
Kolos
, and
R. J.
Bartlett
,
J. Chem. Phys.
89
,
3662
(
1988
).
4.
U.
Niesar
,
G.
Corongiu
,
M. J.
Huang
,
M.
Dupius
, and
E.
Clementi
,
Int. J. Quantum Chem., Quantum Chem. Symp.
23
,
421
(
1989
).
5.
S.
Rybak
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
95
,
6576
(
1991
).
6.
J. G. C. M.
van Duijneveldt-van de Rijdt
and
F. B.
van Duijneveldt
,
J. Chem. Phys.
97
,
5019
(
1992
).
7.
J. E.
Del Bene
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
527
(
1992
).
8.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
9.
S. S.
Xantheas
and
T. H.
Dunning
,
J. Chem. Phys.
99
,
8774
(
1993
).
10.
J. E.
Del Bene
and
I.
Shavitt
,
J. Mol. Struct.: THEOCHEM
113
,
27
(
1994
).
11.
F.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
103
,
950
(
1995
).
12.
W.
Klopper
,
M.
Schütz
,
H. P.
Lüthi
, and
S.
Leutwyler
,
J. Chem. Phys.
103
,
1085
(
1995
).
13.
M. W.
Feyereisen
,
D.
Feller
, and
D. A.
Dixon
,
J. Phys. Chem.
100
,
2993
(
1996
).
14.
S. S.
Xantheas
,
J. Chem. Phys.
104
,
8821
(
1996
).
15.
E. M.
Mas
and
K.
Szalewicz
,
J. Chem. Phys.
104
,
7606
(
1996
).
16.
S.
Simon
,
M.
Duran
, and
J. J.
Dannenberg
,
J. Chem. Phys.
105
,
11024
(
1996
).
17.
A.
Halkier
,
H.
Koch
,
P.
Jo/rgensen
,
O.
Christiansen
,
I. M. B.
Nielsen
, and
T.
Helgaker
,
Theor. Chim. Acta
97
,
150
(
1997
).
18.
J. V.
Burda
,
P.
Hobza
, and
R.
Zahradnik
,
Chem. Phys. Lett.
288
,
20
(
1998
).
19.
W.
Klopper
,
M.
Quack
, and
M. A.
Suhm
,
J. Chem. Phys.
108
,
10096
(
1998
).
20.
W.
Klopper
,
M.
Quack
, and
M. A.
Suhm
,
Mol. Phys.
94
,
105
(
1998
).
21.
W.
Klopper
and
H.
Lüthi
,
Mol. Phys.
96
,
559
(
1999
).
22.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
23.
G.
Karlström
and
A. J.
Sadlej
,
Theor. Chim. Acta
61
,
1
(
1982
).
24.
D. W.
Schwenke
and
D. G.
Truhlar
,
J. Chem. Phys.
82
,
2418
(
1985
).
25.
S. K.
Loushin
,
S.
Liu
, and
C. E.
Dykstra
,
J. Chem. Phys.
84
,
2720
(
1986
).
26.
M.
Gutowski
,
J. H.
van Lenthe
,
J.
Verbeek
,
F. B.
van Duijneveldt
, and
G.
Chalasinski
,
Chem. Phys. Lett.
124
,
370
(
1986
).
27.
M. M.
Szczesniak
and
S.
Scheiner
,
J. Chem. Phys.
84
,
6328
(
1986
).
28.
B.
Liu
and
A. D.
McLean
,
J. Chem. Phys.
91
,
2348
(
1989
).
29.
F.
Tao
and
Y.
Pan
,
J. Phys. Chem.
95
,
3582
(
1991
).
30.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
31.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
32.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
33.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
98
,
1358
(
1993
).
34.
D. E.
Woon
and
T. H.
Dunning
,
J. Chem. Phys.
100
,
2975
(
1994
).
35.
C.
Mo/ller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
36.
G. D.
Purvis
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
37.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
38.
J.
Noga
,
W.
Klopper
, and
W.
Kutzelnigg
,
Chem. Phys. Lett.
199
,
497
(
1992
).
39.
J.
Noga
and
W.
Kutzelnigg
,
J. Chem. Phys.
101
,
7738
(
1994
).
40.
J.
Noga
,
D.
Tunega
,
W.
Klopper
, and
W.
Kutzelnigg
,
J. Chem. Phys.
103
,
309
(
1995
).
41.
H.
Müller
,
W.
Kutzelnigg
, and
J.
Noga
,
Mol. Phys.
92
,
535
(
1997
).
42.
J. Noga, W. Klopper, and W. Kutzelnigg, in Recent Advances in Coupled-Cluster Methods, Recent Advances in Computational Chemistry, edited by R. J. Barlett (World Scientific, Singapore, 1997), Vol. 3.
43.
W. Klopper, in Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998), Vol. 4.
44.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
45.
A.
Halkier
,
T.
Helgaker
,
P.
Jo/rgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
46.
W.
Klopper
,
K. L.
Bak
,
P.
Jo/rgensen
,
J.
Olsen
, and
T.
Helgaker
,
J. Phys. B
32
,
R103
(
1999
).
47.
A.
Halkier
,
W.
Klopper
,
T.
Helgaker
, and
P.
Jo/rgensen
,
J. Chem. Phys.
111
,
4424
(
1999
).
48.
K. P. Huber and G. H. Herzberg, Molecular Spectra and Molecular Structure. Constants of Diatomic Molecules (Van Nostrand-Reinhold, New York, 1979).
49.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
50.
Landholt-Börnstein, Structure Data of Free Polyatomic Molecules (Springer-Verlag, 1987), Vol. II-15.
51.
J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, ACESII, an ab initio program system, 1992.
52.
J. F.
Stanton
,
J.
Gauss
,
J. D.
Watts
,
W. J.
Lauderdale
, and
R. J.
Bartlett
,
Int. J. Quantum Chem., Quantum Chem. Symp.
26
,
879
(
1992
).
53.
T. Helgaker, H. J. A. Jensen, P. Jo/rgensen, J. Olsen, K. Ruud, H. Ågren, T. Andersen, K. L. Bak, V. Bakken, O. Christiansen, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer, T. Saue, P. R. Taylor, and O. Vahtras, DALTON, an ab initio electronic structure program, Release 1.0 (1997). See http://www.kjemi.uio.no/software/dalton/dalton.html.
54.
H.
Koch
,
O.
Christiansen
,
R.
Kobayashi
,
P.
Jo/rgensen
, and
T.
Helgaker
,
Chem. Phys. Lett.
228
,
233
(
1994
).
55.
H.
Koch
,
A. S.
de Meras
,
T.
Helgaker
, and
O.
Christiansen
,
J. Chem. Phys.
104
,
4157
(
1996
).
56.
H.
Koch
,
P.
Jo/rgensen
, and
T.
Helgaker
,
J. Chem. Phys.
104
,
9528
(
1996
).
57.
W. Klopper, SORE (second-order r12 energy) program.
58.
W.
Klopper
,
J. Chem. Phys.
102
,
6168
(
1995
).
59.
R. N.
Hill
,
J. Chem. Phys.
83
,
1173
(
1985
).
60.
A.
Halkier
,
H.
Koch
,
O.
Christiansen
,
P.
Jo/rgensen
, and
T.
Helgaker
,
J. Chem. Phys.
107
,
849
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.