Two-dimensional (2D) fifth-order Raman spectroscopy is a coherent spectroscopy that can be used as a structural tool, in a manner analogous to 2D nuclear magnetic resonance (NMR) but with much faster time scale. By including the effect of dipole-induced dipole interactions in the molecular polarizability, it is shown that 2D Raman experiments can be used to extract distances between coupled dipoles, and thus elucidate structural information on a molecular level. The amplitude of cross peaks in the 2D Raman spectrum arising from dipole-induced dipole interactions is related to the distance between the two dipoles (r) and the relative orientation of the dipoles. In an isotropic sample with randomly distributed dipole orientations, such as a liquid, the cross peak amplitude scales as r−6. In an anisotropic sample such as a solid, where the orientational averaging effects do not nullify the leading order contribution, the amplitude scales as r−3. These scaling relationships have analogy to the dipole coupling relationships that are observed in solid state and liquid 2D NMR measurements.

1.
R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford University Press, Oxford, 1987).
2.
A. Bax, Two-Dimensional Nuclear Magnetic Resonance in Liquids (Reidel, Boston, 1982).
3.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
4.
R. M.
Stratt
and
M.
Maroncelli
,
J. Phys. Chem.
100
,
12981
(
1996
).
5.
M. D.
Ediger
,
C. S.
Angell
, and
S. R.
Nagel
,
J. Phys. Chem.
100
,
13200
(
1996
).
6.
T. P.
Lodge
and
M.
Muthukumar
,
J. Phys. Chem.
100
,
13275
(
1996
).
7.
T. E. Creighton, Proteins: Structures and Molecular Properties, 2nd ed. (Freeman, New York, 1993).
8.
K. A.
Dill
and
H. S.
Chan
,
Nat. Struct. Biol.
4
,
10
(
1997
).
9.
J. O.
Onuchic
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
,
Annu. Rev. Phys. Chem.
48
,
545
(
1997
).
10.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
11.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
).
12.
M. Cho, Two-Dimensional Vibrational Spectroscopy, Advances in Multiphoton Processes and Spectroscopy, edited by Y. Fujimura and S.H. Lin (World Scientific, Singapore, 1999), Vol. 12.
13.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
14.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
295
,
298
(
1998
).
15.
K. A. Nelson (private communication).
16.
L.
Lepetit
,
G.
Cheriaux
, and
M.
Joffre
,
J. Opt. Soc. Am. B
12
,
2467
(
1995
).
17.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
238
,
1
(
1995
).
18.
J.-P.
Likforman
,
M.
Joffre
, and
V.
Thierry-Mieg
,
Opt. Lett.
22
,
1104
(
1997
).
19.
J. D.
Hybl
,
A. W.
Albrecht
,
S. M.
Gallager-Faeder
, and
D. M.
Jonas
,
Chem. Phys. Lett.
297
,
307
(
1998
).
20.
W. M. Zhang, V. Chernyak, and S. Mukamel, in Ultrafast Phenomena XI, edited by J. G. F. T. Elsaesser, D. Wiersma, and W. Zinth (Springer, Berlin, 1998).
21.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
74
,
3061
(
1995
).
22.
K.
Tominaga
,
G. P.
Keogh
,
Y.
Naitoh
, and
K.
Yoshihara
,
J. Raman Spectrosc.
26
,
495
(
1995
).
23.
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
1159
(
1996
).
24.
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
4419
(
1996
).
25.
K. Tominaga, Off-Resonant Fifth and Seventh Order Time-Domain Nonlinear Spectroscopy on Vibrational Dephasing in Liquids, Advances in Multiphoton Processes and Spectroscopy, edited by Y. Fujimura and S.H. Lin (World Scientific, Singapore, 1997), Vol. 11.
26.
T.
Steffen
and
K.
Duppen
,
Phys. Rev. Lett.
76
,
1224
(
1996
).
27.
T.
Steffen
,
J. T.
Fourkas
, and
K.
Duppen
,
J. Chem. Phys.
105
,
7364
(
1996
).
28.
T.
Steffen
and
K.
Duppen
,
J. Chem. Phys.
106
,
3854
(
1997
).
29.
T.
Steffen
and
K.
Duppen
,
Chem. Phys. Lett.
273
,
47
(
1997
).
30.
T.
Steffen
and
K.
Duppen
,
Chem. Phys. Lett.
290
,
229
(
1998
).
31.
T.
Steffen
and
K.
Duppen
,
Chem. Phys.
233
,
267
(
1998
).
32.
A.
Tokmakoff
,
J. Chem. Phys.
105
,
13
(
1996
).
33.
A.
Tokmakoff
and
G. R.
Fleming
,
J. Chem. Phys.
106
,
2569
(
1997
).
34.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
, and
G. R.
Fleming
,
Chem. Phys. Lett.
272
,
48
(
1997
).
35.
A.
Tokmakoff
,
M. J.
Lang
,
X. J.
Jordanides
, and
G. R.
Fleming
,
Chem. Phys.
233
,
231
(
1998
).
36.
S. P.
Palese
,
J. T.
Buontempo
,
L.
Schilling
,
W. T.
Lotshaw
,
Y.
Tanimura
,
S.
Mukamel
, and
R. J. D.
Miller
,
J. Phys. Chem.
98
,
12466
(
1994
).
37.
J. A.
Leegwater
and
S.
Mukamel
,
J. Chem. Phys.
102
,
2365
(
1995
).
38.
V.
Khidekel
and
S.
Mukamel
,
Chem. Phys. Lett.
240
,
304
(
1995
);
V.
Khidekel
and
S.
Mukamel
,
Chem. Phys. Lett.
263
,
350
(
1996
).
39.
V.
Khidekel
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
105
,
8543
(
1996
).
40.
V.
Chernyak
and
S.
Mukamel
,
J. Chem. Phys.
108
,
5812
(
1998
).
41.
S.
Mukamel
,
A.
Piryatinski
, and
V.
Chernyak
,
Acc. Chem. Res.
32
,
145
(
1999
).
42.
S.
Mukamel
,
A.
Piryatinski
, and
V.
Chernyak
,
J. Chem. Phys.
110
,
1711
(
1999
).
43.
S. Mukamel, Principle of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
44.
K.
Okumura
and
Y.
Tanimura
,
Phys. Rev. E
53
,
214
(
1996
).
45.
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
107
,
2267
(
1997
).
46.
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
106
,
1687
(
1997
).
47.
Y.
Tanimura
and
K.
Okumura
,
J. Chem. Phys.
106
,
2078
(
1997
).
48.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
277
,
159
(
1997
).
49.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
278
,
175
(
1997
).
50.
M.
Cho
,
K.
Okumura
, and
Y.
Tanimura
,
J. Chem. Phys.
108
,
1326
(
1997
).
51.
K.
Park
and
M.
Cho
,
J. Chem. Phys.
109
,
10559
(
1998
).
52.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
108
,
240
(
1998
).
53.
R. L.
Murry
,
J. T.
Fourkas
, and
T.
Keyes
,
J. Chem. Phys.
109
,
7913
(
1998
).
54.
Y.
Tanimura
,
Chem. Phys.
233
,
217
(
1998
).
55.
C. J. F. Böttcher, Theory of Electric Polarization (Elsevier, Amsterdam, 1973).
56.
P.
Madden
and
D.
Kivelson
,
Adv. Chem. Phys.
56
,
467
(
1984
).
57.
P. A. Madden, Molecular Liquids, edited by A. J. Barns et al. (Reidel, Dordrecht, 1984), p. 431.
58.
T.
Keyes
and
B. M.
Ladanyi
,
Adv. Chem. Phys.
56
,
411
(
1984
).
59.
P. A. Madden, in Liquids, Freezing, and the Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (Elsevier, Amsterdam, 1991), pp. 549-627.
60.
M.
Cho
,
M.
Du
,
N. F.
Scherer
,
G. R.
Fleming
, and
S.
Mukamel
,
J. Chem. Phys.
99
,
2410
(
1993
).
61.
B. M.
Ladanyi
and
Y. Q
,
Liang
,
J. Chem. Phys.
103
,
6325
(
1995
).
62.
N. Bloembergen, Nonlinear Optics (World Scientific, Singapore, 1996).
63.
With this definition of αs(t), the polarizability of the A mode αA(t) should depend on the B mode in general, since μs(t),αs(t), etc. are merely expansion coefficients of the dipole ps(t) (interacting with other dipoles) in terms of the electric field at the time t; this is not the polarizability for an isolated mode although this point might not been emphasized in the literature. This understanding allows us to expand the polarizability in terms of the nuclear coordinates of A which is affected by the B mode as we discuss below. It should be noted that αs(t) depends on the electric field at the time beforet in general as we see below.
64.
For the energy of induced dipoles in an external field, the factor 12 is required, (Refs. 65,55,56) although the energy of a rigid dipole in an external field is given without this factor. One way of understanding this is as follows. Imagine that the external field is produced by one single external charge e and the whole system consists of this charge and induced dipoles pA and pB. Then the total electric-field energy of the system is given by U=eφ/2, where φ is the potential at the position of the true charge because the induced dipoles have any true charges. Since φ is produced by the two dipoles, it is given by φ=pArA/rA3+pBrB/rB3 where rA and rA are the distance vector between the charge and the dipole A and its magnitude. Thus, the energy can be written as U=−pAEex(rA)/2−pBEex(rB)/2, where Eex(r) is the field produced by the external charge, or Eex(r)=−er/r3. Note here that the minus sign comes from the definition of the direction of the vector rA and rB. This argument is easily extended to the case of the time dependent external field.
65.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
66.
This propagator is equal to one of the propagators, (i/ℏ)D(−+)(τ), for the Feynman rule on the unified path, which has been developed in (Refs. 44,67,45,46).
67.
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
105
,
7294
(
1996
).
68.
We should note that we cannot apply the Feynman rule in exactly the same manner as the one developed in Refs. 44,45,46,67 because the expansion of αs(t) does not include the cross term QA(t)QB(t) while the interaction does; we first substitute Eq. (18) with Eqs. (16) and (23) into the ’s in the known expression for the fifth-order response function, R(5)∼〈[[ᾱ(T1+T2),ᾱ(T1)],ᾱ(0)]〉, to express R(5) as a sum of correlation functions of nuclear coordinates, and then we apply our Feynman rule for these correlation functions.
69.
In the purely isotropic case, θAB is randomly distributed; c=∫0πdθ sinθ (3 cos2 θ−1)/π=0.
This content is only available via PDF.
You do not currently have access to this content.