Algorithms have been developed recently to construct realizations of random media with specified statistical correlation functions. There is a need for the formulation of exact conditions on the correlation functions in order to ensure that hypothetical correlation functions are physically realizable. Here we obtain positivity conditions on certain integrals of the autocorrelation function of d-dimensional statistically homogeneous media and of statistically isotropic media. These integral conditions are then applied to test various classes of autocorrelation functions. Finally, we note some integral conditions on the three-point correlation function.

1.
J. A.
Quiblier
,
J. Colloid Interface Sci.
98
,
84
(
1984
).
2.
P. M. Adler, Porous Media: Geometry and Transport (Butterworth-Heinemann, Boston, 1992).
3.
A. P.
Roberts
and
M.
Teubner
,
Phys. Rev. E
51
,
4141
(
1995
);
P.
Levitz
,
Adv. Colloid Interface Sci.
76–77
,
71
(
1998
).
4.
C. L. Y.
Yeong
and
S.
Torquato
,
Phys. Rev. E
57
,
495
(
1998
).
5.
D. Cule and S. Torquato, J. Appl. Phys. (in press).
6.
C.
Manwart
and
R.
Hilfer
,
Phys. Rev. E
59
,
5596
(
1999
).
7.
S.
Torquato
and
G.
Stell
,
J. Chem. Phys.
77
,
2071
(
1982
).
8.
P.
Debye
,
H. R.
Anderson
, and
H.
Brumberger
,
J. Appl. Phys.
28
,
679
(
1957
).
9.
J. G.
Berryman
,
J. Math. Phys.
28
,
244
(
1987
).
10.
M. B. Priestley, Spectral Analysis and Time Series (Academic, New York, 1981).
11.
G. K. Batchelor, The Theory of Homogeneous Turbulence (Cambridge University Press, Cambridge, 1959).
12.
Even if γ̃(k) does not exist, one can still relate the properties of γ(r) to its spectral properties using the more general Stieltjes representation.
13.
B.
Lu
and
S.
Torquato
,
J. Chem. Phys.
93
,
3452
(
1990
).
14.
S.
Prager
,
Phys. Fluids
4
,
1477
(
1961
).
15.
S.
Torquato
and
J.
Rubinstein
,
J. Chem. Phys.
90
,
1644
(
1989
).
16.
Note that the damped, oscillating correlation function S2(r) given in Ref. 4 is for phase 2 (not for phase 1 as in the present work). Moreover, it contains a phase angle which we omitted here.
17.
S. Torquato, Ph.D. dissertation, SUNY Stony Brook, New York (1980).
18.
G. W.
Milton
,
Phys. Rev. Lett.
46
,
542
(
1981
).
19.
G. W.
Milton
,
J. Mech. Phys. Solids
30
,
177
(
1982
).
20.
S.
Torquato
,
J. Mech. Phys. Solids
45
,
1421
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.