Raman intensities have been computed for a series of test molecules (N2,H2S,H2O,H2CO,CH4,C2H2,C2H4,C2H6,SiO2,NH3,CH2F2, and CH2Cl2) using Hartree–Fock, second-order Mo/ller–Plesset perturbation theory (MP2), and density functional theory, including local, gradient-corrected, and hybrid methods (S-VWN, B-LYP and B3-LYP, and MPW1-PW91) to evaluate their relative performance. Comparisons were made with three different basis sets: 6-31G(d), Sadlej, and aug-cc-pVTZ. The quality of basis set used was found to be the most important factor in achieving quantitative results. The medium sized Sadlej basis provided excellent quantitative Raman intensities, comparable to those obtained with the much larger aug-cc-pVTZ basis set. Harmonic vibrational frequencies computed with the Sadlej basis set were in good agreement with experimental fundamentals. For the quantitative prediction of vibrational Raman spectra, the Sadlej basis set is an excellent compromise between computational cost and quality of results.

1.
M.
Delhaye
,
M. C.
Dhamelincourt
, and
E.
Dasilva
,
Rev. Inst. Fr. Petrol.
48
,
183
(
1993
).
2.
J. E.
Katon
,
Vib. Spectrosc.
7
,
201
(
1994
).
3.
K. P. J.
Williams
,
I. C.
Wilcock
,
I. P.
Hayword
, and
A.
Whitley
,
Spectroscopy
11
,
45
(
1996
).
4.
M. J.
Rodriguez
,
Spectroscopy
13
,
14
(
1998
).
5.
B.
Klassen
,
R.
Aroca
, and
G. A.
Nazri
,
J. Phys. Chem.
100
,
9334
(
1996
).
6.
P. Pulay, in Ab Initio Methods in Quantum Chemistry, edited by K. P. Lawley (Wiley, New York, 1987), p. 241.
7.
A. P.
Scott
and
L.
Radom
,
J. Phys. Chem.
100
,
16502
(
1996
).
8.
M. W.
Wong
,
Chem. Phys. Lett.
256
,
391
(
1996
).
9.
For example, reported scaling factors for DFT methods with the 6-31G(d) basis set are 0.9833 for S-VWN and 0.9945 for B-LYP. By contrast, the scale factors for conventional methods are 0.8953, 0.9427, and 0.9537 for Hartree-Fock, MP2, and QCISD, respectively (from Refs. 7 8).
10.
F.
De Proft
,
J. M. L.
Martin
, and
P.
Geerlings
,
Chem. Phys. Lett.
250
,
393
(
1996
).
11.
D.
Porezag
and
M. R.
Pederson
,
Phys. Rev. B
54
,
7830
(
1996
).
12.
D.
Papousek
,
Z.
Papouskova
, and
D. P.
Chong
,
J. Phys. Chem.
99
,
15387
(
1995
).
13.
J. R.
Thomas
,
B. J.
DeLeeuw
,
G.
Vacek
,
T. D.
Crawford
,
Y.
Yamagucki
, and
H. F.
Schaefer
,
J. Chem. Phys.
99
,
403
(
1993
).
14.
M. D.
Halls
and
H. B.
Schlegel
,
J. Chem. Phys.
109
,
10587
(
1998
).
15.
A.
Komornicki
and
J. W.
MvIver
,
J. Chem. Phys.
70
,
2014
(
1979
).
16.
M. J.
Frisch
,
Y.
Yamaguchi
,
J. F.
Gaw
,
H. F.
Schaeffer
, and
J. S.
Binkley
,
J. Chem. Phys.
84
,
531
(
1985
).
17.
R. D.
Amos
,
Chem. Phys. Lett.
124
,
376
(
1986
).
18.
G. B.
Bacskay
,
S.
Saebo
, and
P. R.
Taylor
,
Chem. Phys.
90
,
215
(
1984
).
19.
B. G.
Johnson
and
J.
Florian
,
Chem. Phys. Lett.
247
,
120
(
1995
).
20.
A.
Stirling
,
J. Chem. Phys.
104
,
1254
(
1996
).
21.
GAUSSIAN 98, Revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
22.
C.
Mo/ller
and
M. S.
Plesset
,
Phys. Rev. B
46
,
618
(
1934
).
23.
Vibrational Intensities in Infrared and Raman Spectroscopy, edited by W. B. Person and G. Zerbi (Elsevier, New York, 1982).
24.
J. C. Slater, Quantum Theory of Molecules and Solids (McGraw-Hill, New York, 1974), Vol. 4.
25.
S. J.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
26.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
27.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
28.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
29.
C.
Adamo
and
V.
Barone
,
Chem. Phys. Lett.
274
,
242
(
1997
).
30.
J. P. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Akademie, Berlin, 1991).
31.
P. C.
Hariharan
and
J. A.
Pople
,
Theor. Chim. Acta
28
,
213
(
1973
).
32.
J. A.
Pople
,
H. B.
Schlegel
,
R.
Krishnan
,
D. J.
Defrees
,
J. S.
Binkley
,
M. J.
Frisch
,
R. A.
Whiteside
,
R. F.
Hout
, and
W. J.
Hehre
,
Int. J. Quantum Chem., Quantum Chem. Symp.
15
,
269
(
1981
).
33.
Sadlej’s polarized electric property basis set was obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0 Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352 (http://www.emsl.pnl.gov:2080/forms/basisform.html).
34.
A. J.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
).
35.
A. J.
Sadlej
,
Theor. Chim. Acta
79
,
123
(
1992
).
36.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
,
90
,
1007
(
1989
).
37.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6769
(
1992
).
38.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
39.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. v. R.
Schleyer
,
J. Comput. Chem.
4
,
294
(
1983
).
40.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
41.
The supplementary material is available on the world wide web at: http://www.chem.wayne.edu/schlegel/supp-mat/
42.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
43.
C. E. Dykstra, Ab Initio Calculation of the Structure and Properties of Molecules (Elsevier, Netherlands, 1988).
44.
Y.
Yamaguchi
,
M.
Frisch
,
J.
Gaw
,
H. F.
Schaefer
, and
J. S.
Binkley
,
J. Chem. Phys.
84
,
2262
(
1986
).
45.
K.
Raghavachari
and
J. A.
Pople
,
Int. J. Quantum Chem.
20
,
167
(
1981
).
46.
H. J.
Werner
and
W.
Meyer
,
Mol. Phys.
31
,
855
(
1976
).
47.
G. H. F.
Dierksen
and
A. J.
Sadlej
,
Theor. Chim. Acta
63
,
69
(
1983
).
48.
For comparison with experiment, the following subset of the set of test molecules was used, due to the availability of appropriate experimental intensities: N2,H2O,CH4,C2H2,C2H4,C2H6,NH3 and CH2F2.
49.
B. Person and G. Zerbi, in Vibrational Intensities in Infrared and Raman Spectroscopy (Elsevier, Amsterdam, 1982), state that “the difficulties of measuring experimental Raman intensities are considerably greater” than for infrared intensities.
50.
I. G.
John
,
G. B.
Backsay
, and
N. S.
Hush
,
Chem. Phys.
51
,
49
(
1980
).
51.
For completeness, we also investigated the effect on Raman intensities of adding a second full set of diffuse functions to the aug-cc-pVTZ basis set (d-aug-cc-pVTZ) for H2CO. The observed intensity change was small at the triple zeta level, ca. 0.1 A4 amu−1.
52.
P.
Botschwina
,
W.
Meyer
, and
A. M.
Semkow
,
Chem. Phys.
15
,
25
(
1976
).
53.
G.
Fogarasi
and
P.
Pulay
,
J. Mol. Struct.
39
,
275
(
1977
).
54.
P.
Pulay
,
G.
Fogarasi
,
G.
Pongor
,
J. E.
Boggs
, and
A.
Vargha
,
J. Am. Chem. Soc.
105
,
7037
(
1983
).
55.
Y. N.
Panchenko
,
Russian Chemical Bulletin
45
,
753
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.