An exact method of calculation of mean first passage times (analogous to that previously used [W. T. Coffey, Yu. P. Kalmykov, E. S. Massawe, and J. T. Waldron, J. Chem. Phys. 99, 4011 (1993)] for the correlation time) is developed in terms of continued fractions from the zero frequency limit of the Laplace transform of the set of differential recurrence relations generated by the Fokker–Planck or Langevin equations. The method because it is based on a Floquet representation avoids the use of quadratures and so may be easily generalized to multidegree of freedom systems by the use of matrix continued fractions. The procedure is illustrated by considering the mean first passage time of a fixed axis rotator with two equivalent sites.

1.
G.
Klein
,
Proc. R. Soc. London, Ser. A
211
,
431
(
1952
).
2.
H. Risken, The Fokker–Planck Equation, 2nd ed. (Springer, Berlin, 1989).
3.
A.
Szabo
,
J. Chem. Phys.
72
,
4620
(
1980
).
4.
W. T.
Coffey
,
Adv. Chem. Phys.
103
,
259
(
1998
).
5.
W. T.
Coffey
,
D. S. F.
Crothers
,
J. L.
Dormann
,
L. J.
Geoghegan
, and
E. C.
Kennedy
,
Phys. Rev. B
58
,
3249
(
1998
).
6.
Yu. P.
Kalmykov
,
S. V.
Titov
, and
W. T.
Coffey
,
Phys. Rev. B
58
,
3267
(
1998
).
7.
Yu. P.
Kalmykov
and
S. V.
Titov
,
Phys. Rev. Lett.
82
,
2967
(
1999
).
8.
W. T.
Coffey
,
J. Chem. Phys.
93
,
724
(
1990
).
9.
W. T. Coffey, Yu. P. Kalmykov, and J. T. Waldron, The Langevin Equation (World Scientific, Singapore, 1996).
10.
D. A.
Garanin
,
Phys. Rev. E
54
,
3250
(
1996
).
11.
W. T.
Coffey
,
D. S. F.
Crothers
,
Yu. P.
Kalmykov
, and
J. T.
Waldron
,
Phys. Rev. B
51
,
15947
(
1995
).
12.
W. T.
Coffey
,
Yu. P.
Kalmykov
,
E. S.
Massawe
, and
J. T.
Waldron
,
J. Chem. Phys.
99
,
4011
(
1993
).
13.
W. T.
Coffey
,
D. S. F.
Crothers
,
Yu. P.
Kalmykov
,
E. S.
Massawe
, and
J. T.
Waldron
,
Phys. Rev. E
49
,
1869
(
1994
).
14.
I.
Derényi
and
R. D.
Astumian
,
Phys. Rev. Lett.
82
,
2623
(
1999
).
15.
H. F. Weinberger, A First Course in Partial Differential Equations (Dover, New York, 1995).
16.
M. Abramowitz and I. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964).
17.
J. I.
Lauritzen
Jr.
and
R. W.
Zwanzig
Jr.
,
Adv. Mol. Relax. Processes
5
,
339
(
1973
).
18.
E. T. Whittaker and G. N. Watson, Modern Analysis 4th ed. (Cambridge University, 1927).
19.
W. T. Coffey and D. S. F. Crothers (to be published).
20.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
Rev. Mod. Phys.
62
,
251
(
1990
).
21.
P.
Reimann
,
G. J.
Schmid
, and
P.
Hänggi
,
Phys. Rev. E
60
,
R1
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.