We have measured the excitation spectra for tropolone–OH in durene single crystal and tropolone–OD in deuterated durene using a time-resolved electron paramagnetic resonance (TREPR) detection method that makes possible to separate the signals due to magnetically different sites. The tunneling doublet with 3 cm−1 was observed in the sharp zero-phonon line. The small splitting indicates that the crystal field increases the barrier of double-minimum potential for the proton tunneling in the S1 state. Moderately asymmetric potentials of the S0 and S1 states, where the energetic imbalance between two wells in the S1 state potential is opposite the S0 state potential, reasonably explained the observed unusual intensity ratio of the tunneling doublet (01+<01). A well-resolved progression of a phonon band with a 15 cm−1 separation was also obtained in durene crystal at very low temperature. From a Franck–Condon analysis of the relative intensity of the phonon band, it was clarified that the stable configuration of the excited state tropolone in durene differed from that of the ground state.

1.
(a)
Y.
Ikegami
,
Bull. Chem. Soc. Jpn.
34
,
91
(
1961
);
(b)
S.
Kinumaki
,
K.
Aida
, and
Y.
Ikegami
,
Sci. Rep. Res. Inst. Tohoku Univ. A
8
,
263
(
1956
).
2.
(a)
A. C. P.
Alves
and
J. M.
Hollas
,
Mol. Phys.
23
,
927
(
1972
);
(b)
A. C. P.
Alves
and
J. M.
Hollas
,
Mol. Phys.
25
,
1305
(
1973
).
3.
R. L.
Redington
and
T. E.
Redington
,
J. Mol. Spectrosc.
78
,
229
(
1979
).
4.
R. L.
Redington
,
J. Chem. Phys.
92
,
6447
(
1990
).
5.
R. K.
Frost
,
F. C.
Hagemeister
,
C. A.
Arrington
,
T. S.
Zwier
, and
K. D.
Jordan
,
J. Chem. Phys.
105
,
2595
(
1996
).
6.
K.
Tanaka
,
H.
Honjo
,
T.
Tanaka
,
H.
Kohguchi
,
Y.
Ohshima
, and
Y.
Endo
,
J. Chem. Phys.
110
,
1969
(
1999
).
7.
R.
Rossetti
and
L. E.
Brus
,
J. Chem. Phys.
73
,
1546
(
1980
).
8.
Y.
Tomioka
,
M.
Ito
, and
N.
Mikami
,
J. Phys. Chem.
87
,
4401
(
1983
).
9.
R. L.
Redington
,
Y.
Chen
,
G. J.
Schere
, and
R. W.
Field
,
J. Chem. Phys.
88
,
627
(
1988
).
10.
H.
Sekiya
,
Y.
Nagashima
, and
Y.
Nishimura
,
J. Chem. Phys.
92
,
5761
(
1990
).
11.
F. A.
Ensminger
,
J.
Plassard
,
T. S.
Zwier
, and
S.
Hardinger
,
J. Chem. Phys.
102
,
5246
(
1995
).
12.
K.
Nishi
,
H.
Sekiya
,
H.
Kawakami
,
A.
Mori
, and
Y.
Nishimura
,
J. Chem. Phys.
109
,
1589
(
1998
).
13.
H.
Sekiya
,
H.
Hamabe
,
H.
Ujita
,
N.
Nakano
, and
Y.
Nshimura
,
J. Chem. Phys.
103
,
3895
(
1995
).
14.
A.
Mitsuzuka
,
A.
Fujii
,
T.
Ebata
, and
N.
Mikami
,
J. Chem. Phys.
105
,
2618
(
1996
).
15.
R. K.
Frost
,
F. C.
Hagemeister
,
C. A.
Arrington
,
D.
Schleppenbach
,
T. S.
Zwier
, and
K. D.
Jordan
,
J. Chem. Phys.
105
,
2605
(
1996
).
16.
N.
Hirota
,
S.
Yamauchi
, and
M.
Terajima
,
Rev. Chem. Intermed.
8
,
189
(
1987
).
17.
W. J.
Buma
,
E. J. J.
Groenen
,
J.
Schmidt
, and
R.
De Beer
,
J. Chem. Phys.
91
,
6549
(
1989
).
18.
M.
Ros
and
E. J. J.
Groenen
,
J. Chem. Phys.
94
,
7640
(
1991
).
19.
H.
Shimoishi
,
S.
Tero-Kubota
,
K.
Akiyama
, and
Y.
Ikegami
,
J. Phys. Chem.
93
,
5410
(
1989
).
20.
(a)
T.
Ikoma
,
K.
Akiyama
,
S.
Tero-Kubota
, and
Y.
Ikegami
,
J. Phys. Chem.
95
,
7119
(
1991
);
(b)
T.
Ikoma
,
K.
Akiyama
,
S.
Tero-Kubota
, and
Y.
Ikegami
,
J. Phys. Chem.
97
,
303
(
1993
);
(c)
T.
Ikoma
,
K.
Akiyama
,
S.
Tero-Kubota
, and
Y.
Ikegami
,
J. Phys. Chem. A
102
,
446
(
1998
).
21.
T.
Ikoma
,
K.
Akiyama
,
S.
Tero-Kubota
, and
Y.
Ikegami
,
J. Chem. Soc., Faraday Trans.
94
,
1197
(
1998
).
22.
J. N. Sherwood, in Physics and Chemistry of the Organic Solid State, edited by D. Fox, M. M. Labes, and A. Weissberger (Interscience, New York, 1967), Vol. 1.
23.
Displacement of 95% of hydrogens for four methyl groups in durene, which was confirmed by proton NMR, was achieved after three repetitions of the catalytic reaction taking a week.
24.
J. M.
Robertson
,
Proc. R. Soc. London, Ser. A
141
,
594
(
1933
).
25.
T.
Ikoma
,
K.
Akiyama
,
S.
Tero-Kubota
, and
Y.
Ikegami
,
J. Phys. Chem.
93
,
7087
(
1989
).
26.
A. C. P.
Alves
,
J. M.
Hollas
,
H.
Musa
, and
T.
Ridley
,
J. Mol. Spectrosc.
109
,
99
(
1985
).
27.
N. J. Turro, Modern Molecular Photochemistry (Benjamin/Cummings, California, 1978).
28.
M. V.
Vener
,
S.
Scheiner
, and
N. D.
Sokolov
,
J. Chem. Phys.
101
,
9755
(
1994
).
29.
S.
Tanaka
and
H.
Nakamura
,
J. Chem. Phys.
102
,
3977
(
1995
).
30.
R.
Rossetti
,
R.
Rayford
,
R. C.
Haddon
, and
L. E.
Brus
,
J. Am. Chem. Soc.
103
,
4303
(
1981
).
31.
F. A.
Ensminger
,
J.
Plassard
, and
T. S.
Zweir
,
J. Phys. Chem.
97
,
4344
(
1993
).
32.
S. L.
Baughcum
,
R. W.
Duerst
,
W. F.
Rowe
,
Z.
Smith
, and
E. B.
Wilson
,
J. Am. Chem. Soc.
103
,
6296
(
1981
).
33.
T.
Tsuji
,
H.
Sekiya
,
S.
Ito
,
H.
Ujita
,
M.
Habu
,
A.
Mori
,
H.
Takeshita
, and
Y.
Nishimura
,
J. Chem. Phys.
98
,
6571
(
1993
).
34.
T. H.
Keil
,
Phys. Rev. A
140
,
601
(
1965
).
35.
N. I. Ostapenko, V. I. Sugakov, and M. T. Shpak, Spectroscopy of Defects in Organic Crystals (Kluwer Academic, Dordrecht, 1993).
36.
S. Bhagavantam and T. Venkatarayudu, Theory of Groups and its Application to Physical Problems (Academic, New York, 1969).
37.
J. Schmidt, in Relaxation Processes in Molecular Excited States, edited by J. Fünfschilling (Kluwer Academic, Dordrecht, 1989).
38.
D.
Haarer
,
J. Chem. Phys.
67
,
4076
(
1977
).
39.
The calculation was carried out using a MOPAC program, Ver. 6 included in CERIUS2, Ver. 3.5 software produced from Molecular Simulations;
J. P. P.
Stewart
,
QCPE Bull.
9
,
10
(
1989
).
40.
(a)
Y.
Kurita
,
T.
Nozoe
, and
M.
Kubo
,
Bull. Chem. Soc. Jpn.
24
,
10
(
1951
);
(b)
Y.
Kurita
and
M.
Kubo
,
Bull. Chem. Soc. Jpn.
24
,
13
(
1951
). The dipole moment of the S0 state was reproduced very well from the method of Ref. 39.
This content is only available via PDF.
You do not currently have access to this content.