The structure of binary hard-sphere mixtures near a hard wall is studied using a density functional theory. The formalism is based on a simple weighted density approach for the one-particle correlation functions of the nonuniform system, and requires as input only the one- and two-particle direct correlation functions of the corresponding uniform system. The approach is designed in a way, where the weight function is decoupled from the weighted density. Numerical results on the density profiles are shown to compare well with available simulation data.
REFERENCES
1.
Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Dekker, New York, 1992).
2.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
3.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1986).
4.
5.
6.
7.
8.
R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Dekker, New York, 1992).
9.
10.
11.
L.
Mier-y-Teran
, S. H.
Suh
, H. S.
White
, and H. T.
Davis
, J. Chem. Phys.
92
, 5087
(1990
).12.
13.
Z.
Tang
, L. E.
Scriven
, and H. T.
Davis
, J. Chem. Phys.
96
, 4639
(1992
).14.
15.
16.
17.
E.
Kierlik
and M. L.
Rosinberg
, Phys. Rev. A
42
, 3382
(1990
).18.
B.
Götzelmann
, A.
Haase
, and S.
Dietrich
, Phys. Rev. E
53
, 3456
(1996
).19.
20.
21.
22.
23.
24.
Z.
Tan
, U. M. B.
Marconi
, F.
van Swol
, and K. E.
Gubbins
, J. Chem. Phys.
90
, 3704
(1989
).25.
A. R.
Denton
and N. W.
Ashcroft
, Phys. Rev. A
44
, 8242
(1991
).26.
27.
28.
29.
30.
31.
32.
F.
van Swol
and J. R.
Henderson
, Phys. Rev. A
43
, 2932
(1991
).
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.