The hydrogen bonded heterodimer tetrahydrofuran⋯HCl has been investigated using molecular beam Fourier transform microwave spectroscopy in combination with ab initio calculations. The rotational spectrum, observed in the range 6–18 GHz, shows a complex pattern originated by the existence of small tunneling splittings in addition to the Cl-nuclear quadrupole coupling hyperfine structure. The vibrational energy difference between the members of the doublet, ΔE=3.550(25) MHz, has been determined from the analysis of the a-type Coriolis coupling interaction between them. Doublets of the same magnitude are also present in the spectra of the different HCl isotopomers analyzed. These tunneling splittings were not observed for the species C4D8O⋯H35Cl. The analysis of all the available data has allowed us to conclude that these splittings are due to pseudorotation within the tetrahydrofuran subunit. The spectroscopic constants have been interpreted in terms of a geometry in which tetrahydrofuran has a conformation close to the twisted ring-form with HCl lying on the plane bisector to the COC ring angle. The potential energy surface for the interaction between tetrahydrofuran and hydrogen chloride has been explored by using ab initio methodologies at the correlated level [MP2, MP4(SDTQ)] with Pople’s 6-31G** and Dunning’s aug-cc-pVDZ basis sets. One minimum and three transition structures were located and characterized at the MP2/6-31G** level. The geometry parameters and rotational constants of the minimum agree quite well with those determined from the spectroscopic data. The transition structures correspond to interconversions between equivalent conformations, the first one via an inversion motion and the remaining two via pseudorotation movements. One of these latter two is responsible for the splittings detected in the microwave spectroscopy study. The tetrahydrofuran⋯hydrogen chloride interaction can be seen as a combination of electrostatic and charge transfer contributions both consistent with the angular geometry exhibited by the complex.

1.
(a) G. C. Pimentel, A. C. McClellan, The Hydrogen Bond, edited by L. Pauling (Freeman, San Francisco, 1960);
(b) S. N. Vinogradov and R. H. Linnell, Hydrogen bonding (van Nostrand Reinhold, New York, 1971);
(c) J. A. Jeffrey, W. Saenger, Hydrogen Bonding in Biological Structures (Springer-Verlag, Berlin, 1991);
(d) J. A. Jeffrey, Introduction to hydrogen bonding (Oxford University, Oxford, 1997).
2.
(a) A. C. Legon, in Atomic, Molecular Beam Methods, edited by G. Scoles (Oxford University, Oxford, 1992), Vol 2, Chap. 9, pp. 289–308;
(b)
A.
Bauder
,
J. Mol. Struct.
408/409
,
33
(
1996
);
(c)
K. R.
Leopold
,
G. T.
Fraser
,
S. E.
Novick
, and
W.
Kemplerer
,
Chem. Rev.
94
,
1807
(
1994
), and references therein.
3.
(a)
D. J.
Nesbitt
,
Chem. Rev.
88
,
843
(
1988
);
(b)
D. J.
Nesbitt
,
Annu. Rev. Phys. Chem.
45
,
367
(
1994
);
(c)
R. C.
Cohen
and
R. J.
Saykally
,
Annu. Rev. Phys. Chem.
42
,
369
(
1991
);
(d)
F.
Huisken
,
Adv. Chem. Phys.
81
,
63
(
1992
);
(e)
M. C.
Heaven
,
Annu. Rev. Phys. Chem.
43
,
283
(
1992
);
(f)
Q. Y.
Shang
and
E. R.
Bernstein
,
Chem. Rev.
94
,
2015
(
1994
).
4.
(a) Modern Electronic Structure Theory. Parts I, II, edited by D. R. Yarkoni (World Scientific, Singapore, 1995);
(b)
M.
Head-Gordon
,
J. Phys. Chem.
100
,
13213
(
1996
).
5.
(a)
G.
Chalasinski
and
M.
Gutowski
,
Chem. Rev.
88
,
943
(
1988
);
(b)
G.
Chalasinski
and
M. M.
Szczesniak
,
Chem. Rev.
94
,
1723
(
1994
).
6.
D.
Suárez
and
J. A.
Sordo
,
J. Chem. Soc. Chem. Commun.
1998
,
385
(
1998
), and references therein.
7.
(a)
A. S.
Georgiou
,
A. C.
Legon
, and
D. J.
Millen
,
Proc. R. Soc. London, Ser. A
372
,
511
(
1981
);
(b)
A. C.
Legon
,
A. L.
Wallwork
, and
D. J.
Millen
,
Chem. Phys. Lett.
178
,
279
(
1991
).
8.
(a)
J. A.
Greenhouse
and
H. L.
Strauss
,
J. Chem. Phys.
50
,
124
(
1969
);
(b)
G. G.
Engerholm
,
A. C.
Luntz
,
W. D.
Gwinn
,
D. O.
Harris
,
J. Chem. Phys.
50
,
2446
(
1969
);
(c) R. Meyer, J. C. López, J. L. Alonso, S. Melandri, P. G. Favero, and W. Caminati, ibid. (in press).
9.
J. L. Alonso et al. (unpublished).
10.
J. L. Alonso, J. C. López, S. Blanco, A. Lesarri, and F. J. Lorenzo (unpublished).
11.
(a)
M. E.
Sanz
,
J. C.
López
, and
J. L.
Alonso
,
J. Phys. Chem.
102
,
3681
(
1998
);
(b)
M. E.
Sanz
,
J. C.
López
,
J. L.
Alonso
,
Chem. Phys. Lett.
288
,
760
(
1998
).
12.
J. L.
Alonso
,
F.
Lorenzo
,
J. C.
López
,
A.
Lesarri
,
S.
Mata
, and
H.
Dreizler
,
Chem. Phys.
218
,
267
(
1997
).
13.
(a) W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley, New York, 1986);
(b)
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
14.
(a)
V.
Jonas
,
G.
Frenking
, and
M. T.
Reetz
,
J. Am. Chem. Soc.
116
,
8741
(
1994
);
(b)
V.
Jonas
and
G.
Frenking
,
J. Chem. Soc. Chem. Commun.
1994
,
1487
(
1994
);
(c)
D.
Fujiang
,
P. W.
Fowler
,
A. C.
Legon
,
J. Chem. Soc. Chem. Commun.
1995
,
113
(
1995
);
(d)
E.
Iglesias
,
T. L.
Sordo
, and
J. A.
Sordo
,
Chem. Phys. Lett.
248
,
179
(
1996
).
15.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
16.
S. S.
Xantheas
,
J. Chem. Phys.
104
,
8821
(
1996
).
17.
GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Rachavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Repogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gardon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
18.
(a) R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Oxford University, New York, 1990);
(b)
R. G. A.
Bone
and
R. F. W.
Bader
,
J. Phys. Chem.
100
,
10892
(
1996
).
19.
For further details, see: (a)
M. I.
Menéndez
,
J. A.
Sordo
, and
T. L.
Sordo
,
J. Phys. Chem.
96
,
1185
(
1992
);
(b)
R.
López
,
M. I.
Menéndez
,
D.
Suárez
,
T. L.
Sordo
, and
J. A.
Sordo
,
Comput. Phys. Commun.
76
,
235
(
1993
).
20.
See, for example: (a)
D.
Suárez
,
T. L.
Sordo
, and
J. A.
Sordo
,
J. Org. Chem.
60
,
2848
(
1995
);
(b)
D.
Suárez
,
J. A.
Sordo
, and
T. L.
Sordo
,
J. Phys. Chem.
100
,
13462
(
1996
), and references therein.
See also Ref. 57.
21.
S.
Inagaki
,
H.
Fujimoto
, and
K.
Fukui
,
J. Am. Chem. Soc.
97
,
6108
(
1975
), and references therein.
22.
E. D.
Glendening
and
A.
Streitwieser
,
J. Chem. Phys.
100
,
2900
(
1994
).
23.
H. J.
Geise
,
W. J.
Adams
, and
L. S.
Bartell
,
Tetrahedron
25
,
3045
(
1969
).
24.
r0=1.283 87 Å derived from the rotational constant B0 reported by:
F. C.
de Lucı́a
,
P.
Helminger
, and
W.
Gordy
,
Phys. Rev. A
3
,
1849
(
1971
).
25.
A. C.
Legon
and
J. C.
Thorn
,
Chem. Phys. Lett.
227
,
472
(
1994
).
26.
W. Gordy and R. L. Cook, Microwave Molecular Spectra (Wiley, New York, 1984), Chap. IX, pp. 391–449.
27.
H. M.
Pickett
,
J. Mol. Spectrosc.
148
,
371
(
1991
).
28.
J. C.
López
,
A.
Degli Esposti
,
D. G.
Lister
,
R.
Cervellati
,
J. L.
Alonso
, and
L.
Forlani
,
J. Mol. Struct.
142
,
97
(
1986
).
29.
(a)
J. C.
López
,
J. L.
Alonso
,
R.
Cervellati
,
A.
Degli Esposti
,
D. G.
Lister
, and
P.
Palmieri
,
J. Chem. Soc., Faraday Trans.
86
,
435
(
1990
);
(b)
A.
Degli Esposti
,
J. L.
Alonso
,
R.
Cervellati
,
D. G.
Lister
,
J. C.
López
, and
P.
Palmieri
,
J. Chem. Soc., Faraday Trans.
86
,
459
(
1990
).
30.
H. M.
Pickett
,
J. Chem. Phys.
56
,
1715
(
1972
).
31.
J. K. G. Watson, Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1977), Vol. 6, pp. 1–89.
32.
See EPAPS Document No. E-JCPSA6-111-006937 for pages of tables containing the frequencies measured for all the isotopomers of the complex THF⋯HCl analyzed in this work.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
33.
Z.
Kisiel
,
A. C.
Legon
, and
D. J.
Millen
,
Proc. R. Soc. London, Ser. A
381
,
419
(
1982
).
34.
S.
Antolinez
,
J. C.
López
, and
J. L.
Alonso
,
Angew. Chem. Int. Ed. Engl.
38
,
1772
(
1999
).
35.
M. E. Sanz, J. C. López, and J. L. Alonso, Chem. Eur. J. (in press).
36.
A. C.
Legon
and
D. J.
Millen
,
Chem. Soc. Rev.
16
,
467
(
1987
).
37.
W. Gordy and R. L. Cook, Microwave Molecular Spectra (Wiley, New York, 1984), p. 861.
38.
A. C.
Legon
,
C. A.
Rego
, and
A. L.
Wallwork
,
J. Chem. Phys.
97
,
3050
(
1992
).
39.
J. A.
Shea
and
S. G.
Kukolich
,
J. Chem. Phys.
78
,
3545
(
1983
).
40.
C. M.
Evans
and
A. C.
Legon
,
Chem. Phys.
198
,
119
(
1995
).
41.
E. J.
Goodwin
,
A. C.
Legon
,
J. Chem. Soc., Faraday Trans. 2
80
,
51
(
1984
).
42.
E. W.
Kaiser
,
J. Chem. Phys.
53
,
1686
(
1970
).
43.
D. O.
Harris
,
G. G.
Engerholm
,
C. A.
Tolman
,
A. C.
Luntz
,
R. A.
Keller
, and
W. D.
Gwinn
,
J. Chem. Phys.
50
,
2438
(
1969
).
44.
J. L. Alonso (unpublished).
45.
The full set of geometrical parameters for all the structures in Fig. 6 are available upon request.
46.
J.
Emsley
,
O. P. A.
Hoyte
, and
R. E.
Overill
,
J. Am. Chem. Soc.
100
,
3303
(
1978
).
47.
V. M.
Rayón
,
J. A.
Sordo
,
Theor. Chem. Acc.
99
,
68
(
1998
).
48.
(a)
D. B.
Cook
,
T. L.
Sordo
, and
J. A.
Sordo
,
J. Chem. Soc. Chem. Commun.
1990
,
185
(
1990
);
(b)
D. B.
Cook
,
J. A.
Sordo
, and
T. L.
Sordo
,
Int. J. Quantum Chem.
48
,
375
(
1993
);
(c)
A. T.
Pudzianowski
,
J. Chem. Phys.
102
,
8029
(
1995
);
(d)
J. A.
Ford
and
D.
Sreele
,
J. Phys. Chem.
100
,
19336
(
1996
);
(e)
P.
Süle
and
A.
Nagy
,
J. Chem. Phys.
104
,
8524
(
1996
);
(f)
W. A.
Herrebout
and
B. J.
van der Veken
,
J. Am. Chem. Soc.
119
,
10446
(
1997
);
(g)
G. P.
Everaert
,
W. A.
Herrebout
,
B. J.
van der Veken
,
J.
Lundell
, and
M.
Räsänen
,
Chem. Eur. J.
4
,
321
(
1998
);
(h)
A. A.
Stolov
,
W. A.
Herrebout
, and
B. J.
van der Veken
,
J. Am. Chem. Soc.
120
,
7310
(
1998
).
49.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
50.
C.
Møller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
51.
(a)
S.
Simon
,
M.
Duran
, and
J. J.
Dannenberg
,
J. Chem. Phys.
105
,
11024
(
1996
);
(b)
S.
Simon
,
M.
Duran
,
J. J.
Dannenberg
,
J. Phys. Chem. A
103
,
1640
(
1999
).
52.
A. C.
Legon
,
Chem. Soc. Rev.
19
,
197
(
1990
).
53.
(a) L. Pauling, The Nature of the Chemical Bond, 3rd ed. (Cornell University, Ithaca, 1960), pp. 449–504;
(b)
G. C.
Pimentel
,
J. Chem. Phys.
19
,
446
(
1951
).
54.
(a)
B. F.
King
and
F.
Weinhold
,
J. Chem. Phys.
103
,
333
(
1995
);
(b)
A. J.
Stone
,
A. D.
Buckingham
, and
P. W.
Fowler
,
J. Chem. Phys.
107
,
1030
(
1997
);
See also: (c)
P.
Kollman
and
L. C.
Allen
,
Chem. Rev.
72
,
283
(
1972
);
(d)
A. D.
Buckingham
and
P. W.
Fowler
,
J. Chem. Phys.
79
,
6426
(
1983
);
(e)
F. A.
Baiocchi
,
W.
Reiher
, and
W.
Klemperer
,
J. Chem. Phys.
79
,
6428
(
1983
);
(f)
M. S.
Gordon
and
J. H.
Jensen
,
Acc. Chem. Res.
29
,
536
(
1996
), and references therein.
55.
It should be noted that deformation contributions partly counterbalance these stabilizing contributions to yield the final bond energies (see Ref. 22).
56.
K. J.
Janda
,
J. M.
Steed
,
S. E.
Novick
, and
W.
Klemperer
,
J. Chem. Phys.
67
,
5162
(
1977
).
57.
(a)
V. M.
Rayón
and
J. A.
Sordo
,
J. Phys. Chem.
101
,
7414
(
1997
);
(b)
V. M.
Rayón
and
J. A.
Sordo
,
J. Chem. Phys.
107
,
7912
(
1997
);
(c)
V. M.
Rayón
and
J. A.
Sordo
,
J. Chem. Phys.
110
,
377
(
1999
).
58.
P. Hobza and R. Zahradnı́k, Intermolecular Complexes. The Role of van der Waals Systems in Physical Chemistry and in Biodisciplines (Academia, Prague, 1988), p. 25.
59.
V.
Branchadell
and
A.
Oliva
,
J. Am. Chem. Soc.
111
,
4132
(
1991
).
60.
(a)
D.
Cremer
and
E.
Kraka
,
Angew. Chem.
23
,
627
(
1984
);
(b)
D.
Cremer
and
E.
Kraka
,
Croat. Chem. Acta
57
,
1259
(
1984
).
61.
J. A.
Sordo
,
J. Chem. Phys.
106
,
6204
(
1997
).
62.
R. S.
Mulliken
,
J. Chem. Phys.
36
,
3428
(
1962
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.