Two different techniques, vacuum ultraviolet laser-induced fluorescence (VUV-LIF) spectroscopy and two-dimensional (2D) ion counting product imaging, have been used to determine the bond energy for the dissociation of jet-cooled O3 into O(1D)+O2(a 1Δg). The photofragment excitation (PHOFEX) spectrum for O(1D) products is recorded by detecting the VUV-LIF signal associated with the 3s 1D0–2p 1D transition at 115.22 nm while scanning the photolysis laser wavelength between 305 and 313 nm. A clear cut-off corresponding to the appearance threshold into O(1D)+O2(a 1Δg) is observed in this PHOFEX spectrum. The 2D image of the O(1D) products from the O3 photolysis near 305 nm is measured using an ion-counting method, with the detection of O(1D) atoms by [2+1] resonance enhanced multiphoton ionization (REMPI) at 205.47 nm. The kinetic-energy distribution obtained from the 2D image shows rotational structure due to the O2(a 1Δg,v=0) fragment. The bond energy into O(1D)+O2(a 1Δg) has been obtained from the rotational assignments in the kinetic-energy distribution. The two different experimental approaches give consistent results and an accurate value of the bond dissociation energy into O(1D)+O2(a 1Δg) is found to be 386.59±0.04 kJ/mol. The standard heat of formation of O3,ΔfH0(O3)=−144.31±0.14 kJ/mol, has also been calculated from the bond energy obtained, in conjunction with thermochemical data for O2 molecule and O atom. The uncertainty for the ΔfH0(O3) value obtained in the present study is smaller than the previous value which has been used widely.

1.
R. P.
Wayne
,
Atmos. Environ.
21
,
1683
(
1987
).
2.
H. Okabe, Photochemistry of Small Molecules (Wiley-Interscience, New York, 1978).
3.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
, Jr.
,
J. A.
Kerr
,
M. J.
Rossi
, and
J.
Troe
,
J. Phys. Chem. Ref. Data
26
,
1329
(
1997
).
4.
R. K.
Sparks
,
L. R.
Carlson
,
K.
Shobatake
,
M. L.
Kowalczyk
, and
Y. T.
Lee
,
J. Chem. Phys.
72
,
1401
(
1980
).
5.
J. J.
Valentini
,
D. P.
Gerrity
,
D. L.
Phillips
,
J.-C.
Nieh
, and
K. D.
Tabor
,
J. Chem. Phys.
86
,
6745
(
1987
).
6.
S. M.
Shamsuddin
,
Y.
Inagaki
,
Y.
Matsumi
, and
M.
Kawasaki
,
Can. J. Chem.
72
,
637
(
1993
).
7.
R. L.
Miller
,
A. G.
Suits
,
P. L.
Houston
,
R.
Toumi
,
J. A.
Mack
, and
A. M.
Wodtke
,
Science
265
,
1831
(
1994
).
8.
D.
Stranges
,
X.
Yang
,
J. D.
Chesko
, and
A. G.
Suits
,
J. Chem. Phys.
102
,
6067
(
1995
).
9.
M.-A.
Thelen
,
T.
Gejo
,
J. A.
Harrison
, and
J. R.
Huber
,
J. Chem. Phys.
103
,
7946
(
1995
).
10.
X.
Yang
,
J.
Lin
,
Y. T.
Lee
,
D. A.
Blank
,
A. G.
Suits
, and
A. M.
Wodtke
,
Rev. Sci. Instrum.
68
,
3317
(
1997
).
11.
R. J.
Wilson
,
J. A.
Mueller
, and
P. L.
Houston
,
J. Phys. Chem.
101
,
7593
(
1997
).
12.
K.
Takahashi
,
N.
Taniguchi
,
Y.
Matsumi
, and
M.
Kawasaki
,
Chem. Phys.
231
,
171
(
1998
).
13.
S. M.
Alder-Golden
,
E. L.
Schweitzer
, and
J. I.
Steinfeld
,
J. Phys. Chem.
76
,
2201
(
1982
).
14.
K.
Takahashi
,
Y.
Matsumi
, and
M.
Kawasaki
,
J. Phys. Chem.
100
,
4084
(
1996
).
15.
K.
Takahashi
,
M.
Kishigami
,
Y.
Matsumi
,
M.
Kawasaki
, and
A. J.
Orr-Ewing
,
J. Chem. Phys.
105
,
5290
(
1996
).
16.
K.
Takahashi
,
M.
Kishigami
,
N.
Taniguchi
,
Y.
Matsumi
, and
M.
Kawasaki
,
J. Chem. Phys.
106
,
6390
(
1997
).
17.
K.
Takahashi
,
N.
Taniguchi
,
Y.
Matsumi
,
M.
Kawasaki
, and
M. N. R.
Ashfold
,
J. Chem. Phys.
108
,
7161
(
1998
).
18.
S. M.
Ball
,
G.
Hancock
,
S. E.
Martin
, and
J. C.
Pinot de Moira
,
Chem. Phys. Lett.
264
,
531
(
1997
).
19.
W.
Denzer
,
G.
Hancock
,
J. C.
Pinot de Moira
, and
P. L.
Tyley
,
Chem. Phys. Lett.
280
,
496
(
1997
).
20.
W.
Denzer
,
G.
Hancock
,
J. C.
Pinot de Moira
, and
P. L.
Tyley
,
Chem. Phys.
231
,
109
(
1998
).
21.
R. K.
Talukdar
,
C. A.
Longfellow
,
M. K.
Gilles
, and
A. R.
Ravishankara
,
Geophys. Res. Lett.
25
,
143
(
1998
).
22.
A. R.
Ravishankara
,
G.
Hancock
,
M.
Kawasaki
, and
Y.
Matsumi
,
Science
280
,
60
(
1998
).
23.
P.
O'Keeffe
,
T.
Ridley
,
S.
Wang
,
K. P.
Lawley
, and
R. J.
Donovan
,
Chem. Phys. Lett.
298
,
368
(
1998
).
24.
P.
O'Keeffe
,
T.
Ridley
,
K. P.
Lawley
,
R. R. J.
Maier
, and
R. J.
Donovan
,
J. Chem. Phys.
110
,
10803
(
1999
).
25.
M. W.
Chase
, Jr.
, NIST-JANAF Thermochemical Tables, Fourth Edition,
J. Phys. Chem. Ref. Data Monogr.
9
,
1
(
1998
).
26.
J. L.
Gole
and
R. N.
Zare
,
J. Chem. Phys.
57
,
5331
(
1972
).
27.
A.
Banishevich
,
S. D.
Peyerimhoff
, and
F.
Grein
,
Chem. Phys.
178
,
155
(
1993
).
28.
T.
Tsuneda
,
H.
Nakano
, and
K.
Hirao
,
J. Chem. Phys.
103
,
6250
(
1995
).
29.
A.
Kailen
and
S.
Jahn
,
Z. Anorg. Chem.
68
,
243
(
1910
).
30.
P.
Günther
,
W.
Wassmuth
, and
L. A.
Schryver
,
Z. Phys. Chem. (Leipzig)
158
,
297
(
1932
).
31.
D. W.
Chandler
and
P. L.
Houston
,
J. Chem. Phys.
87
,
1445
(
1987
).
32.
P. L.
Houston
,
Acc. Chem. Res.
22
,
309
(
1989
).
33.
P. L.
Houston
,
J. Phys. Chem.
100
,
12757
(
1996
).
34.
B.-Y.
Chang
,
R. C.
Hoetzlein
,
J. A.
Mueller
,
J. D.
Geiser
, and
P. L.
Houston
,
Rev. Sci. Instrum.
69
,
1665
(
1998
).
35.
A. T. J. B.
Eppink
and
D. H.
Parker
,
Rev. Sci. Instrum.
68
,
3477
(
1997
).
36.
S. Gerstenkorn and P. Luc, Atlas du Spectre D'Absorption de la Molecule D'Iode; C.N.R.S.: Paris, 1978.
37.
R.
Hilbig
and
R.
Wallenstein
,
Appl. Opt.
21
,
913
(
1982
).
38.
S. T.
Pratt
,
P. M.
Dehmer
, and
J. L.
Dehmer
,
Phys. Rev. A
43
,
4702
(
1991
).
39.
D. J.
Bamford
,
L. E.
Jusinski
, and
W. K.
Bischel
,
Phys. Rev. A
34
,
185
(
1986
).
40.
D. J.
Bamford
,
M. J.
Dyer
, and
W. K. B.
Bischel
,
Phys. Rev. A
36
,
3497
(
1987
).
41.
H.
Rottke
and
H.
Zacharias
,
Opt. Commun.
55
,
87
(
1985
).
42.
D. R. Miller, Atomic and Molecular Beam Methods, edited by G. Scoles (Oxford University Press, New York, 1988), Vol. 1.
43.
J.-C.
Nigh
and
J. J.
Valentini
,
J. Phys. Chem.
91
,
1370
(
1987
).
44.
L.
Herzberg
and
G.
Herzberg
,
Ap. J.
105
,
353
(
1947
).
45.
C. E. Moore, Atomic Energy Levels NSRDS-NBS 35, Vol. 1 (1971).
This content is only available via PDF.
You do not currently have access to this content.