An effective Hamiltonian in a basis of spin- and space-symmetry adapted configuration state functions (CSF), which includes information from Kohn–Sham density functional theory (DFT), is used to calculate configuration interaction (CI) wave functions for the electronic states of molecules. The method emphasizes on states of multiconfigurational character which cannot be represented by conventional DFT. The CI matrix elements are constructed empirically by using the exact operator and corrections from DFT. Both the optimized KS orbitals from the parent determinant and the corresponding KS potential from the parent state density are used. Depending on their energy gap the CI off-diagonal elements between CSF are exponentially scaled to zero to avoid double counting of electron correlation. The selection of the most important CSF describing nondynamical correlation effects and the use of an approximate resolution of the identity (RI) for the evaluation of the two-electron integrals allows a very efficient DFT/MRCI treatment of molecules with several hundreds of electrons. As applications, the prediction of excitation energies for singlet and triplet states of organic molecules and transition metal complexes, the calculation of electronic circular dichroism spectra and investigations of the energetics of diradicals are presented. It is found, that the new DFT/MRCI approach gives results of high accuracy (rms errors for relative energies <0.2 eV) comparable to those from sophisticated ab initio treatments.

1.
I. Shavitt, in Modern Theoretical Chemistry Vol. 3: Methods of Electronic Structure Theory, edited by H. F. Schaefer III (Plenum, New York, 1977).
2.
B. O. Roos, M. Fülscher, P.-A. Malmqvist, M. Merchan, and L. Serano-Andres, in Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, edited by S. R. Langhoff (Kluwer Academic, Dordrecht, 1995).
3.
W. D.
Laidig
,
P.
Saxe
, and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
887
(
1987
).
4.
J. Gauss, in Encyclopedia of Computational Chemistry, Vol. 1 (Wiley-VCH, New York, 1998), p. 615.
5.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).
6.
A.
Nagy
,
Phys. Rep.
298
,
1
(
1998
).
7.
P. R. T.
Schipper
,
O.V.
Gritsenko
, and
E. J.
Baerends
,
Theor. Chem. Acc.
99
,
329
(
1998
).
8.
E. R.
Davidson
,
Int. J. Quantum Chem.
69
,
241
(
1998
).
9.
C. D.
Sherril
,
M. S.
Lee
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
302
,
425
(
1999
).
10.
J. C.
Slater
,
J. B.
Mann
,
T. M.
Wilson
, and
J. H.
Wood
,
Phys. Rev.
184
,
672
(
1969
).
11.
T.
Ziegler
,
A.
Rauk
, and
E. J.
Baerends
,
Theor. Chim. Acta
43
,
261
(
1977
)
12.
P.
Borowski
,
K. D.
Jordan
,
J.
Nichols
, and
P.
Nachtigall
,
Theor. Chem. Acc.
99
,
135
(
1998
).
13.
J.
Gräfenstein
,
E.
Kraka
, and
D.
Cremer
,
Chem. Phys. Lett.
288
,
593
(
1998
).
14.
M.
Filatov
and
S.
Shalik
,
Chem. Phys. Lett.
304
,
429
(
1999
).
15.
S. G.
Wang
and
W. H. E.
Schwarz
,
J. Chem. Phys.
105
,
4641
(
1996
).
16.
G. C.
Lie
and
E.
Clementi
,
J. Chem. Phys.
60
,
1275
(
1974
).
17.
N. O. J.
Malcolm
and
J. J. W.
McDoual
,
Chem. Phys. Lett.
282
,
121
(
1998
).
18.
W.
Wu
and
S.
Shaik
,
Chem. Phys. Lett.
301
,
37
(
1999
).
19.
T.
Leininger
,
H.
Stoll
,
H.-J.
Werner
, and
A.
Savin
,
Chem. Phys. Lett.
275
,
151
(
1997
).
20.
E. K. U.
Gross
,
J. F.
Dobson
, and
M.
Petersilka
,
Top. Curr. Chem.
181
,
81
(
1996
).
21.
M. E. Casida, in Recent Advances in Density Functional Methods, Vol. 1, edited by D. P. Chong (World Scientific, Singapore, 1995).
22.
C.
Jamorski
,
M. E.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
104
,
5134
(
1996
).
23.
R.
Bauernschmitt
and
R.
Ahlrichs
,
Chem. Phys. Lett.
256
,
454
(
1996
).
24.
I.
Frank
,
J.
Hutter
,
D.
Marx
, and
M.
Parinello
,
J. Chem. Phys.
108
,
4060
(
1998
).
25.
R.
Singh
and
B. M.
Deb
,
Phys. Rep.
311
,
47
(
1999
).
26.
R.
van Leeuwen
and
E. J.
Baerends
,
Phys. Rev. A
49
,
2421
(
1994
).
27.
M. E.
Casida
,
C.
Jamorski
,
K. C.
Casida
, and
D. R.
Salahub
,
J. Chem. Phys.
108
,
4439
(
1998
).
28.
S. Grimme, unpublished results.
29.
N. C.
Handy
and
D. J.
Tozer
,
J. Comput. Chem.
20
,
106
(
1999
).
30.
O. V.
Gritsenko
,
P. R. T.
Schipper
, and
E. J.
Baerends
,
Chem. Phys. Lett.
302
,
199
(
1999
).
31.
S.
Grimme
,
Chem. Phys. Lett.
259
,
128
(
1996
).
32.
C.
Builliard
,
M.
Allan
,
J. M.
Smith
,
D. A.
Hrovat
,
W. T.
Borden
, and
S.
Grimme
,
Chem. Phys.
225
,
153
(
1997
).
33.
F.
Pulm
,
J.
Schramm
,
J.
Hormes
,
S.
Grimme
, and
S. D.
Peyerimhoff
,
Chem. Phys.
224
,
143
(
1997
).
34.
S.
Grimme
,
J.
Harren
,
A.
Sobanski
, and
F.
Vögtle
,
Eur. J. Org. Chem.
1998
,
1491
.
35.
A. B. J.
Parusel
,
G.
Köhler
, and
S.
Grimme
,
J. Phys. Chem. A
102
,
6297
(
1998
).
36.
S. Grimme and S. D. Peyerimhoff, in The Role of Rydberg States in Spectroscopy and Photochemistry, edited by C. Sandorfy (Kluwer Academic, New York, 1999).
37.
S. D. Peyerimhoff, in Encyclopedia of Computational Chemistry, Vol. 4, (Wiley-VCH, New York, 1998), p. 2646.
38.
R. W.
Wetmore
and
G. A.
Segal
,
Chem. Phys. Lett.
36
,
478
(
1975
).
39.
A.
Schäfer
,
C.
Huber
, and
R.
Ahlrichs
,
J. Chem. Phys.
100
,
5829
(
1994
).
40.
P. M. W.
Gill
,
B. G.
Johnson
,
J. A.
Pople
, and
M. J.
Frisch
,
Int. J. Quantum Chem.: Quantum Chem. Symp.
26
,
319
(
1992
).
41.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
42.
O.
Treutler
and
R.
Ahlrichs
,
J. Chem. Phys.
102
,
346
(
1995
).
43.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
44.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
45.
O.
Vahtras
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Chem. Phys. Lett.
213
,
514
(
1993
).
46.
F.
Weigend
and
M.
Häser
,
Theor. Chem. Acc.
97
,
331
(
1997
).
47.
F.
Weigend
,
M.
Häser
,
H.
Patzelt
, and
R.
Ahlrichs
,
Chem. Phys. Lett.
294
,
143
(
1998
). RI-MP2 optimized auxiliary basis sets are available via anonymous ftp://ftp.chemie.uni-karlsruhe.de/pub/cbasen.
48.
E. R.
Davidson
,
J. Comput. Phys.
17
,
87
(
1975
).
49.
M.
Crouzeix
,
B.
Philippe
, and
M.
Sadkane
,
J. Sci. Comput.
15
,
62
(
1994
).
50.
M.
Hanrath
and
B.
Engels
,
Chem. Phys.
225
,
197
(
1997
).
51.
G. Monniger and W. Krätschmer (private communication).
52.
A.
Banichevich
and
S. D.
Peyerimhoff
,
Chem. Phys.
174
,
93
(
1993
).
53.
C. Bulliard, M. Allan, G. Wirtz, E. Haselbach, K. A. Zachariasse, N. Detzer, and S. Grimme, J. Phys. Chem. A (in press).
54.
R. E.
Stratmann
,
G. E.
Scuseria
, and
M. J.
Frisch
,
J. Chem. Phys.
109
,
8218
(
1999
).
55.
M.
Allan
,
J. Electron Spectrosc. Relat. Phenom.
48
,
219
(
1999
).
56.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
57.
D. G.
Leopold
,
K. K.
Muarry
,
A. E.
Stevens Miller
, and
W. C.
Lineberger
,
J. Chem. Phys.
83
,
4849
(
1985
).
58.
A.
Skancke
,
D. A.
Hrovat
, and
W. T.
Borden
,
J. Am. Chem. Soc.
120
,
7079
(
1998
).
59.
J. E.
Douglas
,
B. S.
Rabinovitch
, and
F. S.
Looney
,
J. Chem. Phys.
23
,
315
(
1955
).
60.
A.
Balkova
and
R. J.
Bartlett
,
J. Chem. Phys.
101
,
8972
(
1994
).
61.
R.
Lindh
,
T. J.
Lee
,
A.
Bernhardsson
,
B. J.
Persson
, and
G.
Karlström
,
J. Am. Chem. Soc.
117
,
7186
(
1995
).
62.
B. O.
Roos
,
K.
Andersson
,
M. P.
Fülscher
,
P.
Malmquist
,
L.
Serrano-Andres
,
K.
Pierloot
, and
M.
Merchan
,
Adv. Chem. Phys.
63
,
219
(
1996
).
63.
U.
Hohm
,
D.
Goebel
, and
S.
Grimme
,
Chem. Phys. Lett.
272
,
328
(
1997
).
64.
Y. S.
Sohn
,
D. N.
Hendrickson
, and
H. B.
Gray
,
J. Am. Chem. Soc.
93
,
3603
(
1971
).
65.
G.
Snatzke
,
Angew. Chem.
91
,
380
(
1979
).
66.
A. E.
Hansen
and
T. D.
Bouman
,
Adv. Chem. Phys.
44
,
545
(
1980
).
67.
M. G.
Mason
and
O.
Schnepp
,
J. Chem. Phys.
59
,
1092
(
1973
).
68.
M. S.
Newman
,
R. S.
Darlak
, and
L.
Tsai
,
J. Am. Chem. Soc.
89
,
6191
(
1967
).
69.
W. S.
Brickell
,
A.
Brown
,
C. M.
Kemp
, and
S. F.
Mason
,
J. Chem. Soc. A
1971
,
756
.
70.
V.
Buss
and
K.
Kolster
,
Chem. Phys.
203
,
309
(
1996
).
71.
F. Furche, R. Ahlrichs, A. Sobanski, F. Vögtle, C. Wachsman, E. Weber, and S. Grimme (unpublished).
72.
M. Filatov (private communication).
This content is only available via PDF.
You do not currently have access to this content.