We analyze how the addition of a small number of polymer molecules influences the diffusion constant of a spherical tracer, whose radius is small compared to the size of the polymer. We show that the polymer chain can be regarded as a two-dimensional object which is an impenetrable obstacle for the tracer. It is also shown that the diffusion constant of the tracer, in contrast to the solution viscosity, is independent of chain length, depending only on the monomer concentration.
REFERENCES
1.
O. V.
Krasilnikov
, R. Z.
Sabirov
, V. I.
Ternovsky
, P. G.
Merzliak
, and J. N.
Muratkhodjaev
, FEMS Microbiol. Immumol.
105
, 93
(1992
);S. M.
Bezrukov
, I.
Vodyanoy
, and V. A.
Parsegian
, Nature (London)
370
, 279
(1994
);S. M.
Bezrukov
, I.
Vodyanoy
, R.
Brutyan
, and J. J.
Kasianowicz
, Macromolecules
29
, 8517
(1996
).2.
R. Nossal and H. Lecar, Molecular and Cell Biophysics (Addison–Wesley, Redwood City, CA, 1991).
3.
4.
B. Hille, Ionic Channels of Excitable Membranes, 2nd ed. (Sinauer, Mass, 1992).
5.
V. A. Parsegian and J. Zimmerberg, in Thermodynamics of Membrane Receptors and Channels, edited by M. Jackson (Chemical Rubber, Boca Raton, FL, 1993);
V. A.
Parsegian
, S. M.
Bezrukov
, and I.
Vodyanoy
, Biosc. Rep.
15
, 503
(1995
);I.
Vodyanoy
, S. M.
Bezrukov
, and V. A.
Parsegian
, Biophys. J.
65
, 2097
(1993
);S. M.
Bezrukov
and J. J.
Kasianowicz
, Eur. Biophys. J.
26
, 471
(1997
).6.
7.
8.
9.
10.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986).
11.
A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (American Institute of Physics, Woodbury, 1994).
12.
A. M.
Berezhkovskii
, Yu. A.
Makhnovskii
, and R. A.
Suris
, J. Stat. Phys.
57
, 333
(1989
).13.
B. B. Mandelbrot, The Fractal Geometry of Nature (Freeman, New York, 1983).
14.
S. A. Rice, Diffusion-Limited Reactions (Elsevier, Amsterdam, 1985).
15.
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.