We have observed the negative ion photoelectron spectrum of the methylnitrene ion, CH3N, and measured the electron affinity of methylnitrene, EA(CH3N)=0.022±0.009 eV. In addition to detaching the methylnitrene anion to the ground state of CH3N(X̃ 3A2), we also detect the first electronically excited state of methylnitrene, ã 1E. We measure the singlet/triplet splitting to be ΔE(ã 1E−X̃ 3A2)=1.352±0.011 eV. The photoelectron spectrum of CH3N ã 1E contains relatively sharp vibronic structure. Unlike the spectra from H2CC, the photoelectron spectra for CH3N show no evidence for a barrier separating the rearrangement of singlet methylnitrene to methyleneimine, [CH31N] → CH2=NH.

1.
C. Wentrup, Reactive Molecules: The Neutral Reactive Intermediates in Organic Chemistry (Wiley, New York, 1984), see Chap. 4.
2.
R. S. Berry, in Nitrenes, edited by W. Lwowski (Wiley–Interscience, New York, 1970), p. 13.
3.
M. S.
Platz
,
Acc. Chem. Res.
28
,
487
(
1995
).
4.
A.
Gilles
,
J.
Masanet
, and
C.
Vermeil
, 0
Chem. Phys. Lett.
25
,
345
(
1974
).
5.
C.
Zetsch
and
F.
Stuhl
,
Chem. Phys. Lett.
33
,
375
(
1975
).
6.
F.
Rohrer
and
F.
Stuhl
,
J. Chem. Phys.
88
,
4788
(
1988
).
7.
S.-J.
Kim
,
T. P.
Hamilton
, and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
114
,
5349
(
1992
).
8.
M. J.
Travers
,
D. C.
Cowles
,
E. P.
Clifford
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
114
,
8699
(
1992
).
9.
D. A.
Hrovat
,
E. E.
Waali
, and
W. T.
Borden
,
J. Am. Chem. Soc.
114
,
8701
(
1992
).
10.
R. G.
Sadygov
and
D. R.
Yarkony
,
J. Chem. Phys.
107
,
4994
(
1997
).
11.
Y.
Kurosaki
,
T.
Takayanagi
,
K.
Sato
, and
S.
Tsunashima
,
J. Phys. Chem. A
102
,
254
(
1998
).
12.
J. H. Glowina, J. Misewich, and P. P. Sorokin, in Supercontinuum Laser Sources, edited by R. R. Alfano (Springer, New York, 1989), p. 337.
13.
J. A.
Leemakers
,
J. Am. Chem. Soc.
55
,
3098
(
1933
).
14.
H.
Bock
and
R.
Dammel
,
Angew. Chem. Int. Ed. Engl.
26
,
504
(
1987
).
15.
J. E.
Jacox
and
D. E.
Milligan
,
J. Mol. Spectrosc.
56
,
333
(
1975
).
16.
M. E.
Jacox
,
J. Phys. Chem. Ref. Data
17
,
418
(
1988
).
17.
K. K.
Murray
,
T. M.
Miller
,
D. G.
Leopold
, and
W. C.
Lineberger
,
J. Chem. Phys.
84
,
2520
(
1986
).
18.
R. B.
Metz
,
T.
Kitsopoulos
,
A.
Weaver
, and
D. M.
Neumark
,
J. Chem. Phys.
88
,
1463
(
1988
).
19.
A.
Weaver
,
R. B.
Metz
,
S. E.
Bradforth
, and
D. M.
Neumark
,
J. Phys. Chem.
92
,
5558
(
1988
).
20.
D. M.
Neumark
,
Annu. Rev. Phys. Chem.
43
,
253
(
1992
).
21.
D. M.
Neumark
,
Acc. Chem. Res.
26
,
33
(
1993
).
22.
K. M.
Ervin
,
J.
Ho
, and
W. C.
Lineberger
,
J. Chem. Phys.
91
,
5974
(
1989
).
23.
H. B.
Ellis
, Jr.
and
G. B.
Ellison
,
J. Chem. Phys.
78
,
6541
(
1983
).
24.
H. B. Ellis, Jr., Ph.D. thesis, Colorado, 1983.
25.
D. C. Cowles, Ph.D. thesis, Colorado, 1991.
26.
C. T.
Wickham-Jones
,
K. M.
Ervin
,
G. B.
Ellison
, and
W. C.
Lineberger
,
J. Chem. Phys.
91
,
2762
(
1989
).
27.
C. E. Moore, Atomic Energy Levels (U.S. GPO, Washington, D.C., 1971), Vol. II. The value of γ is established by the study of the photoelectron spectra of the tungsten atom. Detachment of the W ion produces several states of W I; one can detect W[a 5D(J=0)←W,W[a 5D(J=1)←W,W[a 5D(J=2)←W,W[a 5D(J=3)←W,W[a 5D(J=4)←W, as well as W[a 7S(J=3)←W. These intervals have been established by atomic spectroscopy and are tabulated above. Use of these precisely known intervals fix γ.
28.
J. L.
Franklin
,
V. H.
Diebler
,
R. M.
Reese
, and
M.
Krauss
,
J. Am. Chem. Soc.
80
,
298
(
1957
).
29.
L. F.
Keyser
and
G. W.
Robinsin
,
J. Am. Chem. Soc.
82
,
5245
(
1960
).
30.
R. L.
Livingston
and
C. N.
Ramachandra Rao
,
J. Phys. Chem.
64
,
756
(
1960
).
31.
P. C.
Engelking
and
W. C.
Lineberger
,
J. Chem. Phys.
65
,
4323
(
1976
).
32.
D. M.
Neumark
,
K. R.
Lykke
,
T.
Andersen
, and
W. C.
Lineberger
,
J. Chem. Phys.
83
,
4364
(
1985
).
33.
M.
Al-Za’al
,
H. C.
Miller
, and
J. W.
Farley
,
Phys. Rev. A
35
,
1099
(
1987
).
34.
These ions are easily prepared by electron bombardment of the proper hydrazoic acids, NH3 or DN3 with a tungsten filament.
35.
K. P. Huber and G. Herzberg, Molecular Spectroscopy and Molecular Structure: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
36.
P. C.
Engelking
,
J. Phys. Chem.
90
,
4544
(
1986
).
37.
C. R.
Brazier
,
P. G.
Carrick
, and
P. F.
Bernath
,
J. Chem. Phys.
96
,
919
(
1992
).
38.
M.
Al-Za’al
,
H. C.
Miller
, and
J. W.
Farley
,
Phys. Rev. A
35
,
1099
(
1987
). Use of NH as a model for CH3N is probably not a terrible assumption.
The rotational spectrum of CH3O has been studied by LMR spectroscopy [
D. K.
Russell
and
H. E.
Radford
,
J. Chem. Phys.
72
,
2750
(
1980
);
D. L.
Cooper
,
J. Chem. Phys.
76
,
2765
(
1982
)] and the spin–orbit constant has been fit as A=−142.8±2.0 cm−1.
This is quite near to that of OH, −139.21 cm−1 [K. P. Huber and G. Herzberg, Molecular Spectroscopy and Molecular Structure: Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979), p. 508].
39.
Thus the ground state of CH3N is E3/22 and the excited spin–orbit component is E1/22 split from the ground state by roughly 0.006 eV.
40.
S. C.
Foster
and
T. A.
Miller
,
J. Phys. Chem.
93
,
5986
(
1989
).
41.
F. O.
Rice
and
C. J.
Grelecki
,
J. Phys. Chem.
61
,
830
(
1957
).
42.
H.
Bock
,
Polyhedron
7
,
2429
(
1988
).
43.
D. E.
Milligan
,
J. Chem. Phys.
35
,
1491
(
1961
).
44.
C. L.
Currie
and
B. D.
Darwent
,
Can. J. Chem.
41
,
1552
(
1963
).
45.
E. Wasserman, in Progress in Physical Organic Chemistry, edited by A. Streitwieser and R. W. Taft (Wiley–Interscience, New York, 1971), Vol. 8, p. 319.
46.
R. F.
Ferrante
,
J. Chem. Phys.
86
,
25
(
1987
).
47.
P. G.
Carrick
,
C. R.
Brazier
,
P. F.
Bernath
, and
P. C.
Engelking
,
J. Am. Chem. Soc.
109
,
5100
(
1987
).
48.
T.
Franken
,
D.
Perner
, and
M. W.
Bosnali
,
Z. Naturforsch. A
25
,
151
(
1970
).
49.
P. G.
Carrick
and
P. C.
Engelking
,
J. Chem. Phys.
81
,
1661
(
1984
).
50.
H.
Shang
,
C.
Yu
,
L.
Ying
, and
X.
Zhao
,
J. Chem. Phys.
103
,
4418
(
1995
).
51.
L.
Ying
,
Y.
Xia
,
H.
Shang
,
X.
Zhao
, and
Y.
Tang
,
J. Chem. Phys.
105
,
5798
(
1996
).
52.
H.
Shang
,
R.
Gao
,
L.
Ying
,
X.
Zhao
, and
Y.
Tang
,
Chem. Phys. Lett.
267
,
345
(
1997
).
53.
W. A.
Goddard
III
,
T. H.
Dunning
, Jr.
,
W. J.
Hunt
, and
P. J.
Hay
,
Acc. Chem. Res.
6
,
368
(
1973
).
54.
W. A.
Goddard
III
and
L. B.
Harding
,
Annu. Rev. Phys. Chem.
29
,
363
(
1978
).
55.
E. L.
Chappell
and
P. C.
Engelking
,
J. Chem. Phys.
89
,
6007
(
1988
).
56.
R. F.
Ferrante
,
J. Chem. Phys.
94
,
4678
(
1991
).
57.
J.
Demuynck
,
D. J.
Fox
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
102
,
6204
(
1980
).
58.
D. R.
Yarkony
,
H. F.
Schaefer
III
, and
S.
Rothenberg
,
J. Am. Chem. Soc.
96
,
5974
(
1974
).
59.
R. R.
Lucchese
and
D. R.
Yarkony
,
J. Chem. Phys.
68
,
2696
(
1978
).
60.
Y.
Xie
,
G. E.
Scuseria
,
B. F.
Yates
,
Y.
Yamaguchi
, and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
111
,
5181
(
1989
).
61.
M. R.
Nimlos
and
G. B.
Ellison
,
J. Am. Chem. Soc.
108
,
6522
(
1986
).
62.
D. C.
Cowles
,
M. J.
Travers
,
J. L.
Frueh
, and
G. B.
Ellison
,
J. Chem. Phys.
94
,
3517
(
1991
).
63.
D. C.
Cowles
,
M. J.
Travers
,
J. L.
Frueh
, and
G. B.
Ellison
,
J. Chem. Phys.
95
,
3864
(
1991
).
64.
This sort of analysis also suggests that the EA(CH3O) should be less than that of OH, which it is EA(CH3O)=1.570 eV < EA(HO)=1.827 eV. We believe that the minute EA of methylnitrene is the reason that no one has ever prepared samples of CD3N. Since the electron binding energy of the CH3N ion is only 185 cm−1, only a small change in the relative zero-point energies of CD3N vs CD3N would lead to an unbound ion.
65.
In the optical emission spectrum A 3E→X 3A2 the Jahn-Teller effect is important. Normally such a transition with dipole selection rules would only permit a1 active modes; in fact both a1 and e modes are observed. This is because JT coupling has broken the symmetry of the E3 state and lowered it to Cs.
66.
S. M.
Colwell
,
R. D.
Amos
, and
N. C.
Handy
,
Chem. Phys. Lett.
109
,
525
(
1984
).
67.
S. M.
Colwell
and
N. C.
Handy
,
J. Chem. Phys.
82
,
1281
(
1985
).
68.
G. D.
Bent
,
G. F.
Adams
,
R. H.
Bartram
,
G. D.
Purvis
, and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
4144
(
1982
).
69.
T. A.
Barckholtz
and
T. A.
Miller
,
Int. Rev. Phys. Chem.
17
,
435
(
1998
).
70.
T. A.
Barckholtz
and
T. A.
Miller
,
J. Phys. Chem. A
103
,
2321
(
1999
).
71.
J. B.
Peel
and
G. D.
Willett
,
J. Chem. Soc., Faraday Trans. 2
71
,
1799
(
1975
).
72.
J. A.
Pople
,
K.
Raghavachari
,
M. J.
Frisch
,
J. S.
Binkley
, and
P. R.
Schleyer
,
J. Am. Chem. Soc.
105
,
6389
(
1983
).
73.
C. R. Kemnitz, G. B. Ellison, W. L. Karney, and W. T. Borden, J. Am. Chem. Soc. (submitted).
74.
C.
Richards
, Jr.
,
C.
Meredith
,
S.-J.
Kim
,
G. E.
Quelch
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
100
,
481
(
1994
).
75.
V.
Walia
and
R.
Kakkar
,
Ind. J. Chem.
29B
,
1007
(
1990
).
76.
R.
Kakkar
and
V.
Walia
,
Ind. J. Chem.
30A
,
308
(
1991
).
77.
V.
Julien
,
A.
Patel
,
Y.
Jones
,
J.
Jiang
, and
J. S.
Hutchinson
,
J. Phys. Chem.
97
,
7011
(
1993
).
78.
M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Steward, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. DeFrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fleuder, and J. A. Pople, (Carnegie-Mellon University, Pittsburgh, 1986).
79.
W. J. Hehre, L. Radom, P. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986). The standard Pople split basis functions 6-31G** for a polarized double zeta basis and 6-311G** for the polarized triple zeta set.
80.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
). Correlation consistent polarized balence double zeta basis (cc-pVDZ) set: hydrogen (4s,1p)/[2s,1p], carbon, and nitrogen (9s,4p,1d)/[3s,2p,1d]; correlation consistent polarized valence triple zeta basis (cc-pVTZ) set: hydrogen (5s,2p,1d)/[3s,2p,1d], carbon, and nitrogen (10s,5p,2d,1f )/[4s,3p,2d,1f]; We have also used a triple zeta plus double polarization basis (TZ2P) which is a (10s,6p,2d)/[3s,4p,1d].
81.
The wave function for the A23CH3N state can be qualitatively written as Ψ(3A2)=A[(1sN)2(1sC)2(σ)2(CHa)2(CHb)2(CHc)2(lone pair)2(px)1(py)1(αβ+βα)] which is Ψ(3A2)=A[(1a1)2(2a1)2(3a1)2(4a1)2(5a1)2(1e)4(ex)1(ey)1(αβ+βα)]. The two components of the E1 state can be written likewise Ψ(1E)=A[(1a1)2(2a1)2(3a1)2(4a1)2(5a1)2(1e)4(ex)1(ey)1(αβ−βα)] and Ψ(1E)=A[(1a1)2(2a1)2(3a1)2(4a1)2(5a1)2(1e)4[(ex)2−(ey)2](αβ−βα)].
82.
J. A.
Pople
,
H. B.
Schlegel
,
R.
Krishnan
,
D. J.
DeFrees
,
J. S.
Binkley
,
M. J.
Frisch
,
R. A.
Whiteside
,
R. F.
Hout
, and
W. J.
Hehre
,
Int. J. Quantum Chem.
15
,
269
(
1981
).
83.
R. F.
Hout
,
B. A.
Levi
, and
W. J.
Hehre
,
J. Comput. Chem.
3
,
234
(
1982
).
84.
J. A.
Pople
,
A. P.
Scott
,
M. W.
Wong
, and
L.
Radom
,
Isr. J. Chem.
33
,
345
(
1993
).
85.
J. H.
Davis
and
W. A.
Goddard
III
,
J. Am. Chem. Soc.
99
,
7111
(
1977
).
86.
L. B.
Harding
,
J. Am. Chem. Soc.
103
,
7469
(
1981
).
87.
J. C.
Slonczewski
,
Phys. Rev.
131
,
1596
(
1963
).
88.
J. C.
Slonczewski
and
V. L.
Moruzzi
,
Physics (Long Island City, NY)
3
,
237
(
1967
).
This content is only available via PDF.
You do not currently have access to this content.