Using scanning tunneling microscopy, we study the post-deposition coarsening of distributions of large, two-dimensional Ag islands on a perfect Ag(100) surface at 295 K. The coarsening process is dominated by diffusion, and subsequent collision and coalescence of these islands. To obtain a comprehensive characterization of the coarsening kinetics, we perform tailored families of experiments, systematically varying the initial value of the average island size by adjusting the amount of Ag deposited (up to 0.25 ML). Results unambiguously indicate a strong decrease in island diffusivity with increasing island size. An estimate of the size scaling exponent follows from a mean-field Smoluchowski rate equation analysis of experimental data. These rate equations also predict a rapid depletion in the initial population of smaller islands. This leads to narrowing of the size distribution scaling function from its initial form, which is determined by the process of island nucleation and growth during deposition. However, for later times, a steady increase in the width of this scaling function is predicted, consistent with observed behavior. Finally, we examine the evolution of Ag adlayers on a strained Ag(100) surface, and find significantly enhanced rates for island diffusion and coarsening.

1.
Morphological Organization in Epitaxial Growth and Removal, World Scientific Series in “Directions in Condensed Matter Physics,” Vol. 13, edited by Z. Zhang and M. G. Lagally (World Scientific, Singapore, 1998).
2.
J. A.
Venables
,
Philos. Mag.
27
,
697
(
1973
);
S.
Stoyanov
and
K.
Kashchiev
,
Curr. Top. Mater. Sci.
7
,
69
(
1981
);
J. W. Evans and M. C. Bartelt, in Ref. 1.
3.
M.
Zinke-Allmang
,
L. C.
Feldman
, and
M. H.
Grabow
,
Surf. Sci. Rep.
16
,
377
(
1992
).
4.
K.
Morgenstern
,
G.
Rosenfeld
, and
G.
Comsa
,
Phys. Rev. Lett.
76
,
2113
(
1996
).
5.
G.
Schulze Icking-Konert
,
M.
Giesen
, and
H.
Ibach
,
Surf. Sci.
398
,
37
(
1998
).
6.
J.-B.
Hannon
,
C.
Klunker
,
M.
Giesen
,
H.
Ibach
,
N. C.
Bartelt
, and
J. C.
Hamilton
,
Phys. Rev. Lett.
79
,
2506
(
1998
).
7.
J.-M.
Wen
,
J. W.
Evans
,
M. C.
Bartelt
,
J. W.
Burnett
, and
P. A.
Thiel
,
Phys. Rev. Lett.
76
,
652
(
1996
);
J.-M.
Wen
,
S.-L.
Chang
,
J. W.
Burnett
,
J. W.
Evans
, and
P. A.
Thiel
Phys. Rev. Lett.
73
,
2591
(
1994
).
8.
W. W.
Pai
,
A. K.
Swan
,
Z.
Zhang
, and
J. F.
Wendelken
,
Phys. Rev. Lett.
79
,
3210
(
1997
).
9.
M.
von Smoluchowski
,
Phys. Z
17
,
585
(
1916
).
10.
K.
Binder
and
M. H.
Kalos
,
J. Stat. Phys.
22
,
363
(
1980
).
11.
A. F.
Voter
,
Soc. Photo-Opt. Inst. Eng.
821
,
214
(
1987
).
12.
A.
Bogicevic
,
S.
Liu
,
J.
Jacobsen
,
B.
Lundqvist
, and
H.
Metiu
,
Phys. Rev. B
57
,
R9459
(
1998
);
D. S.
Sholl
and
R. T.
Skodje
,
Phys. Rev. Lett.
75
,
3158
(
1995
);
C. D.
Van Siclen
Phys. Rev. Lett.
75
,
1574
(
1995
);
J. M.
Soler
,
Phys. Rev. B
50
,
5578
(
1994
);
H. C.
Kang
,
P. A.
Thiel
, and
J. W.
Evans
,
J. Chem. Phys.
93
,
9018
(
1990
).
13.
J.
Heinon
,
I.
Koponen
,
J.
Merikoski
, and
T.
Ala-Nissila
,
Phys. Rev. Lett.
82
,
2733
(
1999
).
14.
S. V.
Khare
and
T. L.
Einstein
,
Phys. Rev. B
57
,
4782
(
1998
);
S. V.
Khare
and
T. L.
Einstein
,
Phys. Rev. B
54
,
11752
(
1996
);
S. V.
Khare
,
N. C.
Bartelt
, and
T. L.
Einstein
,
Phys. Rev. Lett.
75
,
2148
(
1995
).
15.
R. Kern. G. Le Lay, and J. J. Metois, in Current Topics in Materials Science, edited by E. Kaldis (North Holland, Amsterdam, 1979), Chap. 3.
16.
W. B.
Phillips
,
E. A.
Deslodge
, and
J. G.
Skofronick
,
J. Appl. Phys.
19
,
3210
(
1968
).
17.
E.
Ruckenstein
and
B.
Pulvermacher
,
J. Catal.
29
,
224
(
1973
).
18.
P.
Meakin
,
Physica A
165
,
1
(
1990
).
19.
D. S.
Sholl
and
R. T.
Skodje
,
Physica A
231
,
631
(
1996
).
20.
H. Metiu, T. R. Mattsson, and G. Mills, in Mechanisms and Principles of Epitaxial Growth in Metallic Systems, edited by L. T. Wille, C. P. Burmester, K. Terakura, G. Comsa, and E. D. Williams (MRS, Pittsburgh, 1998), Vol. 528, p. 133;
T. R.
Mattsson
,
G.
Mills
, and
H.
Metiu
,
J. Chem. Phys.
110
,
12151
(
1999
).
21.
J. R.
Sanchez
and
J. W.
Evans
,
Phys. Rev. B
59
,
3224
(
1999
).
22.
Activation barriers for key PD processes (Refs. 11, 13, and 23) are roughly given by the sum of the barrier, Ee, for diffusion along 〈110〉 edges, and some multiple of an effective nearest-neighbor interaction. The terrace diffusion barrier satisfies Ed≈2Ee. The vacancy diffusion barrier, Ev, is set equal to Ee in Ref. 13, but it is likely higher. For Cu/Cu(100), one has Ev=0.44,Ee=0.25,Ed=0.43 [EMT (Ref. 24)]; Ev=0.42,Ed=0.52 [GGA (Ref. 25)]. For Ag/Ag(100), one has Ev=0.42,Ee=0.25,Ed=0.37 [EMT (Ref. 24)]; Ev=0.46,Ee=0.26,Ed=0.49 [EAM (Ref. 11)]. All energies are in eV.
23.
C. R.
Stoldt
,
A. M.
Cadilhe
,
C. J.
Jenks
,
J.-M.
Wen
,
J. W.
Evans
, and
P. A.
Thiel
,
Phys. Rev. Lett.
81
,
2950
(
1999
).
24.
P.
Stoltze
,
J. Phys.: Condens. Matter
6
,
9495
(
1994
).
25.
G.
Boisvert
and
L. J.
Lewis
,
Phys. Rev. B
56
,
7643
(
1997
).
26.
D.
Kandel
,
Phys. Rev. Lett.
79
,
4238
(
1997
).
27.
M. C.
Bartelt
and
J. W.
Evans
,
Surf. Sci.
298
,
421
(
1993
);
M. C.
Bartelt
and
J. W.
Evans
,
Phys. Rev. B
46
,
12675
(
1992
).
28.
M. C.
Bartelt
and
J. W.
Evans
,
Phys. Rev. B
54
,
R17359
(
1996
).
29.
M. C.
Bartelt
,
C. R.
Stoldt
,
C. J.
Jenks
,
P. A.
Thiel
, and
J. W.
Evans
,
Phys. Rev. B
59
,
3125
(
1999
).
30.
L.
Bardotti
,
M. C.
Bartelt
,
C. J.
Jenks
,
C. R.
Stoldt
,
J.-M.
Wen
,
C.-M.
Zhang
,
P. A.
Thiel
, and
J. W.
Evans
,
Langmuir
14
,
1487
(
1998
).
31.
C.-M.
Zhang
,
M. C.
Bartelt
,
J.-M.
Wen
,
C. J.
Jenks
,
J. W.
Evans
, and
P. A.
Thiel
,
Surf. Sci.
406
,
178
(
1998
).
32.
D. W.
McComb
,
B. A.
Collings
,
R. A.
Wolkow
,
D. J.
Moffatt
,
C. D.
MacPherson
,
D. M.
Rayner
,
P. A.
Hackett
, and
J. E.
Hulse
,
Chem. Phys. Lett.
251
,
8
(
1996
);
T. Michely and G. Comsa, in Ref. 1.
33.
G.
Oshanin
,
M.
Moreau
, and
S.
Burlatsky
,
Adv. Colloid Interface Sci.
49
,
1
(
1994
).
34.
C. R.
Stoldt
,
A. M.
Cadilhe
,
M. C.
Bartelt
,
C. J.
Jenks
,
P. A.
Thiel
, and
J. W.
Evans
,
Prog. Surf. Sci.
59
,
67
(
1998
).
35.
In Ref. 7, the estimate of τ was based the number of hops required for an atom (random walker) to visit of the order of (Ledge)2 sites. However, not all these sites need be visited for a cluster to collide with another cluster, since clusters are extended objects.
36.
M. C.
Bartelt
,
S.
Gunther
,
E.
Kopatzki
,
R. J.
Behm
, and
J. W.
Evans
,
Phys. Rev. B
53
,
4099
(
1996
).
37.
C.
Ratsch
,
A.
Zangwill
,
P.
Smilauer
, and
D. D.
Vvedensky
,
Surf. Sci.
329
,
L599
(
1995
).
38.
E.
Bauer
,
Z. Kristallogr.
110
,
372
(
1958
).
39.
H.
Roeder
,
K.
Bromann
,
H.
Brune
, and
K.
Kern
,
Surf. Sci.
376
,
13
(
1997
).
40.
C.
Ratsch
,
A.
Zangwill
, and
P.
Smilauer
,
Surf. Sci.
314
,
L937
(
1994
). For near-square islands, the strain energy is reasonably estimated from a 1D Frenkel-Kontorova theory treating the island as a composite of noninteracting 1D adatom chains.
41.
M.
Schroeder
and
D. E.
Wolf
,
Surf. Sci.
375
,
129
(
1997
).
42.
C. Ratsch, P. Ruggerone, and M. Scheffler, in Ref. 1.
43.
J.
de la Figuera
,
J. E.
Prieto
,
C.
Ocal
, and
R.
Miranda
,
Solid State Commun.
89
,
815
(
1994
).
44.
J. C.
Hamilton
,
Phys. Rev. Lett.
77
,
885
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.