When a Ne:CO2 mixture is subjected to Penning ionization and/or photoionization by neon atoms in their first excited states, between 16.6 and 16.85 eV, and the products are rapidly frozen at approximately 5 K, the infrared spectrum of the resulting deposit includes absorptions assigned to CO2+,(CO2)2+,CO2, and (CO2)2. The lowest (μ 2u+) Renner component of the bending fundamental of CO2+ trapped in a neon matrix appears near the gas-phase band center, but other Renner components are undetectable. Absorptions of a photolabile product correspond to the recently identified CO-stretching fundamentals of (CO2)2+. Weak infrared absorptions at 1253.8 and 714.2 cm−1 are assigned to ν1 and ν2 of CO2, respectively, and a moderately intense absorption at 2894.7 cm−1 is assigned to the ν13 combination band of that product. As in other recent argon- and neon-matrix studies, two weak infrared absorptions can be assigned to the two infrared-active OCO-stretching fundamentals of the D2d structure of (CO2)2. Detailed isotopic substitution studies support all of these assignments. A weak absorption near the CO2 bending fundamental, for which isotopic substitution data are incomplete, may be contributed either by a second fundamental of (CO2)2(D2d) with b2 symmetry or by a weakly interacting (CO2)n⋅⋅CO2 complex. Such ion–molecule complexes contribute other absorptions near ν3 of CO2 and of CO2.

1.
M. E.
Jacox
and
W. E.
Thompson
,
J. Chem. Phys.
91
,
1410
(
1989
).
2.
L. B.
Knight
, Jr.
,
D.
Hill
,
K.
Berry
,
R.
Babb
, and
D.
Feller
,
J. Chem. Phys.
105
,
5672
(
1996
).
3.
J. T.
Godbout
,
T. M.
Halasinski
,
G. E.
Leroi
, and
J.
Allison
,
J. Phys. Chem.
100
,
2892
(
1996
).
4.
T.
Tsukuda
,
M. A.
Johnson
, and
T.
Nagata
,
Chem. Phys. Lett.
268
,
429
(
1997
).
5.
M.
Zhou
and
L.
Andrews
,
J. Chem. Phys.
110
,
2414
(
1999
).
6.
M.
Zhou
and
L.
Andrews
,
J. Chem. Phys.
110
,
6820
(
1999
).
7.
Certain commercial instruments and materials are identified in this paper in order to specify adequately the experimental procedure. In no case does such identification imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the instruments or materials identified are necessarily the best available for the purpose.
8.
D.
Forney
,
W. E.
Thompson
, and
M. E.
Jacox
,
J. Chem. Phys.
97
,
1664
(
1992
).
9.
M. E.
Jacox
and
W. B.
Olson
,
J. Chem. Phys.
86
,
3134
(
1987
).
10.
R. A.
Toth
,
J. Opt. Soc. Am. B
8
,
2236
(
1991
);
R. A.
Toth
,
J. Opt. Soc. Am. B
10
,
2006
(
1993
).
11.
D.
Forney
,
W. E.
Thompson
, and
M. E.
Jacox
,
J. Chem. Phys.
99
,
7393
(
1993
).
12.
M. E.
Jacox
and
W. E.
Thompson
,
J. Phys. Chem.
95
,
2781
(
1991
).
13.
K.
Kawaguchi
,
C.
Yamada
, and
E.
Hirota
,
J. Chem. Phys.
82
,
1174
(
1985
).
14.
T. J.
Sears
,
Mol. Phys.
59
,
259
(
1986
).
15.
J. M.
Frye
and
T. J.
Sears
,
Mol. Phys.
62
,
919
(
1987
).
16.
G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand, Princeton, 1945), pp. 370–372.
17.
V. E.
Bondybey
and
J. H.
English
,
J. Chem. Phys.
67
,
2868
(
1977
).
18.
J.
Agreiter
,
M.
Lorenz
,
A. M.
Smith
, and
V. E.
Bondybey
,
Chem. Phys.
224
,
301
(
1997
).
19.
E. B. Wilson, Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations (McGraw–Hill, New York, 1955), p. 69.
20.
J. H. Schachtschneider, Technical Report Nos. 231-64 and 57-65, Shell Development Co., Emeryville, CA, 1964;
(private communication).
21.
K.
Hiraoka
,
G.
Nakajima
, and
S.
Shoda
,
Chem. Phys. Lett.
146
,
535
(
1988
).
22.
G. P.
Smith
,
P. C.
Cosby
, and
J. T.
Moseley
,
J. Chem. Phys.
67
,
3818
(
1977
).
23.
G. P.
Smith
and
L. C.
Lee
,
J. Chem. Phys.
69
,
5393
(
1978
).
24.
M. A.
Johnson
,
M. L.
Alexander
, and
W. C.
Lineberger
,
Chem. Phys. Lett.
112
,
285
(
1984
).
25.
A. J.
Illies
,
M. F.
Jarrold
,
W.
Wagner-Redeker
, and
M. T.
Bowers
,
J. Phys. Chem.
88
,
5204
(
1984
).
26.
A. J.
Illies
,
M. L.
McKee
, and
H. B.
Schlegel
,
J. Phys. Chem.
91
,
3489
(
1987
).
27.
R. N.
Compton
,
P. W.
Reinhardt
, and
C. D.
Cooper
,
J. Chem. Phys.
63
,
3821
(
1975
).
28.
D.
Yu
,
A.
Rauk
, and
D. A.
Armstrong
,
J. Phys. Chem.
96
,
6031
(
1992
).
29.
J. V. Coe, Ph.D. thesis, Johns Hopkins University, 1986;
S. T. Arnold et al., in Chemical Physics of Atomic and Molecular Clusters, edited by G. Scoles (North-Holland, Amsterdam, 1990), pp. 467–490.
30.
G. L.
Gutsev
,
R. J.
Bartlett
, and
R. N.
Compton
,
J. Chem. Phys.
108
,
6756
(
1998
).
31.
P.
Baltzer
et al.,
J. Chem. Phys.
104
,
8922
(
1996
).
32.
C.
Camy-Peyret
,
J.-M.
Flaud
,
A.
Perrin
, and
K. N.
Rao
,
J. Mol. Spectrosc.
95
,
72
(
1982
).
33.
L. S.
Rothman
,
A.
Goldman
,
J. R.
Gillis
,
R. R.
Gamache
,
H. M.
Pickett
,
R. L.
Poynter
,
N.
Husson
, and
A.
Chedin
,
Appl. Opt.
22
,
1616
(
1983
).
34.
Z. H.
Kafafi
,
R. H.
Hauge
,
W. E.
Billups
, and
J. L.
Margrave
,
J. Am. Chem. Soc.
105
,
3886
(
1983
).
35.
Z. H.
Kafafi
,
R. H.
Hauge
,
W. E.
Billups
, and
J. L.
Margrave
,
Inorg. Chem.
23
,
177
(
1984
).
36.
S. H.
Fleischman
and
K. D.
Jordan
,
J. Phys. Chem.
91
,
1300
(
1987
).
37.
M. J.
DeLuca
,
B.
Niu
, and
M. A.
Johnson
,
J. Chem. Phys.
88
,
5857
(
1988
).
38.
T. M.
Halasinski
,
J. T.
Godbout
,
J.
Allison
, and
G. E.
Leroi
,
J. Phys. Chem.
100
,
14865
(
1996
).
39.
M. E.
Jacox
and
W. E.
Thompson
,
J. Chem. Phys.
102
,
6
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.