Using a quasi-Jahn-Teller model and an extended version of the approximate Born-Oppenheimer (BO) single surface equations, Baer, Charutz, Kosloff, and Baer [J. Chem. Phys. 105, 9141 (1996)] have performed time-independent scattering calculations to study a direct effect on the symmetry of the nuclear wave function due to conical intersections between BO potential energy surfaces. In this article, we have addressed the same problem using the same model by introducing either a vector potential in the nuclear Hamiltonian or by incorporating a phase factor in the nuclear wave function. The scattering calculations have been carried out by using a time-dependent wave packet approach.

1.
E.
Teller
,
J. Phys. Chem.
41
,
109
(
1937
).
2.
G. Herzberg, Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1966), pp. 442–444.
3.
T.
Carrington
,
Discuss. Faraday Soc.
53
,
27
(
1972
).
4.
J. O.
Hirschfelder
,
J. Chem. Phys.
6
,
795
(
1938
).
5.
R. N.
Porter
,
R. M.
Stevens
, and
M.
Karplus
,
J. Chem. Phys.
49
,
5163
(
1968
).
6.
J. L.
Jackson
and
R. E.
Wyatt
,
Chem. Phys. Lett.
18
,
161
(
1973
).
7.
B. M.
Smirnov
, Zh. Eksp. Teor. Fiz. 46, 578 (1964) [English Transl.:
Sov. Phys. JETP
19
,
394
(
1964
)].
8.
F. A.
Matsen
,
J. Phys. Chem.
68
,
3283
(
1964
).
9.
E.
Frenkel
,
Z. Naturforsch. Teil A
25
,
1265
(
1970
).
10.
H. C.
Longuet-Higgins
,
Proc. R. Soc. London, Ser. A
344
,
147
(
1975
).
11.
Y. T.
Lee
,
R. J.
Gordon
, and
D. R.
Herschbach
,
J. Chem. Phys.
54
,
2410
(
1971
).
12.
J. D.
McDonald
,
P. R.
LeBreton
,
Y. T.
Lee
, and
D. R.
Herschbach
,
J. Chem. Phys.
56
,
769
(
1972
).
13.
G.
Herzberg
and
H. C.
Longuet-Higgins
,
Discuss. Faraday Soc.
35
,
77
(
1963
).
14.
R. Englman, The Jahn-Teller Effect in Molecules and Crystals (Wiley-Interscience, New York, 1972).
15.
W.
Moffitt
and
W.
Thorson
,
Phys. Rev.
108
,
1251
(
1957
).
16.
H. C.
Longuet-Higgins
,
U.
Opik
,
M. H. L.
Pryce
, and
R. A.
Sack
,
Proc. R. Soc. London, Ser. A
244
,
1
(
1958
).
17.
M. S.
Child
and
H. C.
Longuet-Higgins
,
Philos. Trans. R. Soc. London, Ser. A
254
,
259
(
1961
).
18.
(a)
W. H.
Gerber
and
E.
Schumacher
,
J. Chem. Phys.
69
,
1692
(
1978
);
(b)
W.
Duch
and
G. A.
Segal
,
J. Chem. Phys.
79
,
2951
(
1983
);
W.
Duch
and
G. A.
Segal
,
J. Chem. Phys.
82
,
2392
(
1985
);
(c)
T. C.
Thompson
,
D. G.
Truhlar
, and
C. A.
Mead
,
J. Chem. Phys.
82
,
2392
(
1985
).
19.
M.
Baer
and
R.
Englman
,
Mol. Phys.
75
,
293
(
1992
).
20.
J.
Schon
and
H.
Köppel
,
J. Chem. Phys.
103
,
9292
(
1995
).
21.
R.
Baer
,
D. M.
Charutz
,
R.
Kosloff
, and
M.
Baer
,
J. Chem. Phys.
105
,
9141
(
1996
).
22.
(a)
M.
Baer
,
Chem. Phys. Lett.
35
,
112
(
1975
);
(b)
Z. H.
Top
and
M.
Baer
,
J. Chem. Phys.
66
,
1363
(
1977
);
Z. H.
Top
and
M.
Baer
,
Chem. Phys.
25
,
1
(
1977
);
(c)
M.
Baer
,
Mol. Phys.
40
,
1011
(
1980
).
23.
(a) M. Baer, in The Theory of Chemical Reaction Dynamics, edited by M. Baer (Chemical Rubber, Boca Raton, 1985), Vol. II, Chap. 4;
(b) M. Baer, in State-Selected and State-to-State Ion-Molecule Reaction Dynamics, edited by M. Baer and C. Y. Ng (Wiley, New York, 1992), Vol. II, Chap.4;
(c) V. Sidis. ibid., Chap. 2;
T.
Pacher
,
L. S.
Cederbaum
, and
H.
Köppel
,
Adv. Chem. Phys.
84
,
293
(
1993
).
24.
(a)
H.
Köppel
,
W.
Domcke
, and
L. S.
Cederbaum
,
Adv. Chem. Phys.
57
,
59
(
1984
);
(b)
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
);
(c)
C.
Petrongolo
,
R. J.
Buekener
, and
S. D.
Peyerimhoff
,
J. Chem. Phys.
78
,
7284
(
1983
);
(d) T. J. Gregory, M. L. Steven, D. G. Truhlar, and D. Schwenke, in Advances in Molecular Vibrations and Collision Dynamics, edited by J. M. Bowman (JAI, Connecticut, 1994), Vol. 2B, Chap. III;
(e)
T.
Pacher
,
C. A.
Mead
,
L. S.
Cederbaum
, and
H.
Köppel
,
J. Chem. Phys.
91
,
7057
(
1989
).
25.
(a)
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
);
(b)
C. A.
Mead
,
Chem. Phys.
49
,
23
(
1980
);
(c)
C. A.
Mead
,
J. Chem. Phys.
72
,
3839
(
1980
).
26.
(a)
Y. M.
Wu
,
B.
Lepetit
, and
A.
Kuppermann
,
Chem. Phys. Lett.
186
,
319
(
1991
);
(b)
Y. M.
Wu
and
A.
Kuppermann
,
Chem. Phys. Lett.
201
,
178
(
1993
);
(c)
A.
Kuppermann
and
Y. M.
Wu
,
Chem. Phys. Lett.
205
,
577
(
1993
);
(d)
X.
Wu
,
R. E.
Wyatt
, and
M.
D’mello
,
J. Chem. Phys.
101
,
2953
(
1994
);
(e)
N.
Markovic
and
G. D.
Billing
,
J. Chem. Phys.
101
,
2953
(
1994
).
27.
Y.
Aharonov
and
D.
Bohm
,
Phys. Rev.
115
,
485
(
1959
).
28.
M. V.
Berry
,
Proc. R. Soc. London, Ser. A
392
,
45
(
1984
).
29.
(a)
S.
Adhikari
and
G. D.
Billing
,
J. Chem. Phys.
107
,
6213
(
1997
);
(b)
S.
Adhikari
and
G. D.
Billing
,
Chem. Phys. Lett.
284
,
31
(
1998
);
(c)
S.
Adhikari
and
G. D.
Billing
,
Chem. Phys. Lett.
289
,
219
(
1998
).
30.
S. Adhikari and G. D. Billing, Chem. Phys. Lett. (in press, 1999).
31.
B.
Kendrick
and
R. T.
Pack
,
J. Chem. Phys.
104
,
7475
(
1996
).
32.
M.
Baer
,
A.
Yahalom
, and
R.
Englman
,
J. Chem. Phys.
109
,
6550
(
1998
).
33.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
34.
(a)
T. J.
Park
and
J. C.
Light
,
J. Chem. Phys.
85
,
5870
(
1986
);
(b)
N.
Markovic
and
G. D.
Billing
,
Chem. Phys. Lett.
195
,
53
(
1992
).
35.
G.
Jolicard
and
G. D.
Billing
,
Chem. Phys.
149
,
261
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.