Fifth-order nonlinear Raman processes using broadband, incoherent light are treated for a multiply resonant, multicomponent mixture. In particular, the theoretical development of the direct and the sequential fifth-order analogs of coherent Raman scattering is presented. Of the complete formalism, only the dominant doubly Raman resonant hyperpolarizability contributions to the signal intensity are discussed in this article. Furthermore, application is made to simulate fifth-order signals from a variety of hypothetical molecular liquids. It is seen how the direct and the sequential processes can distinguish themselves in a mixture, in a neat liquid with more than one Raman coherence, and also whenever the Raman active modes are taken to be anharmonic. This theoretical treatment anticipates experimental results presented in the following paper.

1.
R.
Loudon
,
Solid State Commun.
6
,
1
(
1968
).
2.
G. G.
Brett
, and
H. P.
Weber
,
IEEE J. Quantum Electron.
4
,
807
(
1968
).
3.
M.
Scotto
,
J. Chem. Phys.
49
,
5362
(
1968
).
4.
R. M.
Hochstrasser
and
G. R.
Meredith
,
Pure Appl. Chem.
50
,
759
(
1978
).
5.
M. L.
Geirnaert
,
G. M.
Gale
, and
C.
Flytzanis
,
Phys. Rev. Lett.
52
,
815
(
1984
).
6.
G. A.
Kenney-Wallace
,
d.
McMorrow
,
W. T.
Lotshaw
,
C.
Kalpouzos
, and
R.
Kitchenham
,
Proc. SPIE
742
,
47
(
1987
).
7.
P.
Cong
,
Y. J.
Yan
,
H. P.
Deuel
, and
J. D.
Simon
,
J. Chem. Phys.
100
,
7855
(
1994
).
8.
M.
Van Burgel
,
D. A.
Wiersma
, and
K.
Duppen
,
J. Chem. Phys.
102
,
20
(
1995
).
9.
E. W.
Castner
,
Y. J.
Chang
,
Y. C.
Chu
, and
G. E.
Walrafen
,
J. Chem. Phys.
102
,
653
(
1995
).
10.
B. D.
Fainberg
and
D.
Huppert
,
Mol. Phys.
64
,
123
(
1995
).
11.
T.
Steffen
and
K.
Duppen
,
Proceedings of Ultrafast Phenomena
8
,
208
(
1996
).
12.
B. D.
Bursulaya
and
H. J.
Kim
,
J. Chem. Phys.
109
,
4911
(
1998
).
13.
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
1159
(
1996
).
14.
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
4419
(
1996
).
15.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
74
,
3061
(
1996
).
16.
R. F.
Loring
and
S.
Mukamel
,
J. Chem. Phys.
83
,
2116
(
1985
).
17.
K.
Tominaga
,
G. P.
Keogh
,
Y.
Naitoh
, and
K.
Yoshihara
,
J. Raman Spectrosc.
26
,
495
(
1995
).
18.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
277
,
159
(
1997
).
19.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. A
55
,
831
(
1997
).
20.
J. E.
Ivanecky
III
and
J. C.
Wright
,
Chem. Phys. Lett.
206
,
437
(
1993
).
21.
V.
Khidekel
and
S.
Mukamel
,
Chem. Phys. Lett.
240
,
304
(
1995
).
22.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
).
23.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
24.
T.
Steffen
,
J. T.
Fourkas
, and
K.
Duppen
,
J. Chem. Phys.
105
,
7364
(
1996
).
25.
T.
Steffen
and
K.
Duppen
,
J. Chem. Phys.
106
,
3854
(
1996
).
26.
V.
Khidekel
,
V.
Chernyak
, and
S
Mukamel
,
J. Chem. Phys.
105
,
8543
(
1996
).
27.
A.
Tokmakoff
and
G. R.
Fleming
,
J. Chem. Phys.
106
,
2569
(
1997
).
28.
K.
Okumira
and
Y.
Tanimura
,
J. Chem. Phys.
107
,
2267
(
1997
).
29.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
, and
G. R.
Fleming
,
Chem. Phys. Lett.
272
,
48
(
1997
).
30.
T.
Steffen
and
K.
Duppen
,
Chem. Phys. Lett.
273
,
47
(
1997
).
31.
K.
Tominaga
,
G. P.
Keogh
, and
K.
Yoshihara
,
J. Mol. Liq.
65-66
,
389
(
1995
).
32.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
76
,
987
(
1996
).
33.
D. J.
Ulness
,
J. C.
Kirkwood
, and
A. C.
Albrecht
,
J. Chem. Phys.
108
,
3897
(
1998
).
34.
N.
Morita
and
T.
Yajima
,
Phys. Rev. A
30
,
2525
(
1984
).
35.
G. S.
Agarwal
,
Phys. Rev. A
37
,
4741
(
1988
).
36.
S. R.
Hartmann
,
AIP Conf. Proc.
160
,
556
(
1987
).
37.
R.
Beach
and
S. R.
Hartmann
,
Phys. Rev. Lett.
53
,
663
(
1984
).
38.
N.
Nakatsuka
,
M.
Tomita
,
M.
Fujiwara
, and
S.
Asaka
,
Phys. Rev. A
29
,
2286
(
1984
).
39.
M. A.
Dugan
and
A. C.
Albrecht
,
Phys. Rev. A
43
,
3877
(
1991
).
40.
S. A.
Schaertel
and
A. C.
Albrecht
,
J. Raman Spectrosc.
25
,
545
(
1994
).
41.
S. A.
Schaertel
,
A. C.
Albrecht
,
A.
Lau
, and
A.
Kummrow
,
Appl. Phys. B: Lasers Opt.
59
,
377
(
1994
).
42.
M. J.
Stimson
,
D. J.
Ulness
, and
A. C.
Albrecht
,
Chem. Phys. Lett.
263
,
185
(
1996
).
43.
D. J.
Ulness
,
M. J.
Stimson
,
J. C.
Kirkwood
, and
A. C.
Albrecht
,
J. Phys. Chem.
101
,
4587
(
1997
).
44.
D. J. Ulness, J. C. Kirkwood, M. J. Stimson, and A. C. Albrecht, Asian J. Phys. (in press).
45.
D. J.
Ulness
,
M. J.
Stimson
,
J. C.
Kirkwood
, and
A. C.
Albrecht
,
J. Raman Spectrosc.
28
,
917
(
1997
).
46.
M. A.
Dugan
,
J. S.
Melinger
, and
A. C.
Albrecht
,
Chem. Phys. Lett.
147
,
411
(
1988
).
47.
M. J.
Stimson
,
D. J.
Ulness
, and
A. C.
Albrecht
,
Chem. Phys.
222
,
17
(
1997
).
48.
M.
Pfeiffer
and
A.
Lau
,
J. Chem. Phys.
108
,
4159
(
1998
).
49.
A.
Lau
,
M.
Pfeiffer
,
V.
Kozich
, and
F.
Tschirschwitz
,
J. Chem. Phys.
108
,
4173
(
1998
).
50.
J.
Kirkwood
,
D.
Ulness
, and
A. C.
Albrecht
,
J. Chem. Phys.
111
,
272
(
1999
), following paper.
51.
The “I” stands for interferometric while the superscript (3) indicates that three actions of the noisy field participate in this spectroscopy.
52.
J.
Kirkwood
,
D.
Ulness
,
M.
Stimson
, and
A. C.
Albrecht
,
Phys. Rev. A
57
,
1417
(
1997
).
53.
T.
Hattori
,
A.
Terasaki
, and
T.
Kobayashi
,
Phys. Rev. A
35
,
715
(
1987
).
54.
E.
Hanumura
and
S.
Mukamel
,
Phys. Rev. A
33
,
1099
(
1986
).
55.
L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University Press, New York, 1995).
56.
C. L. Mehta, in Lectures in Theoretical Physics, edited by W. E. Brittin (The University of Colorodo Press, Boulder, CO, 1965), Vol. VIIC, p. 345.
57.
K.
Okumura
and
Y.
Tanimura
,
Chem. Phys. Lett.
278
,
175
(
1997
).
58.
T.
Steffen
and
K.
Duppen
,
Chem. Phys. Lett.
290
,
229
(
1998
).
59.
A.
Tokmakoff
,
M. J.
Lang
,
X, J
,
Jordanides
, and
G. R.
Fleming
,
Chem. Phys.
233
,
231
(
1998
).
60.
V.
Chemyak
and
S.
Mukamel
,
J. Chem. Phys.
108
,
5812
(
1998
).
61.
J. L.
Oudar
and
Y. R.
Shen
,
Phys. Rev. A
22
,
1141
(
1980
).
62.
Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
63.
N.
Bloembergen
,
H.
Lotem
, and
R. T.
Lynch
,
Indian J. Pure Appl. Phys.
16
,
151
(
1978
).
64.
D. J.
Ulness
and
A. C.
Albrecht
,
Phys. Rev. A
53
,
1081
(
1996
).
65.
D. J. Ulness Ph.D. thesis, Cornell University, 1996.
66.
D. Lee and A. C. Albrecht, in Advances in Infrared and Raman Spectroscopy, edited by R. J. Clark and R. E. Hester (Wiley–Heyden, New York, 1984), Vol. 12, p. 129.
67.
These diagrams are formally equivalent to double sided Feynman diagrams.
68.
L.
Ziegler
and
A. C.
Albrecht
,
J. Raman Spectrosc.
8
,
73
(
1979
).
69.
L.
Ziegler
and
A. C.
Albrecht
,
J. Chem. Phys.
74
,
982
(
1981
).
70.
D. P.
Gerrity
,
L. D.
Ziegler
,
P. B.
Kelly
,
R. A.
Desiderio
, and
B.
Hudson
,
J. Chem. Phys.
83
,
3209
(
1985
).
71.
L. C.
Mayne
,
L. D.
Ziegler
, and
B.
Hudson
,
J. Phys. Chem.
89
,
3395
(
1985
).
72.
M. J. Stimson Ph.D. thesis, Cornell University, 1997.
73.
M. R.
Battaglia
and
P. A.
Madden
,
Mol. Phys.
36
,
1601
(
1978
).
74.
J.
Kirkwood
,
D.
Ulness
,
M.
Stimson
, and
A. C.
Albrecht
,
Phys. Rev. A
58
,
4910
(
1998
).
75.
J. Kirkwood, D. Ulness, and A. C. Albrecht (unpublished).
This content is only available via PDF.
You do not currently have access to this content.