The effect of ionic drift caused by small constant electric field on autocatalytic reaction fronts of ionic species is studied both theoretically and numerically. Besides varying the velocity of propagation, the electric field parallel to the direction of propagation may induce lateral instability in planar fronts resulting in the emergence of cellular structures. The difference in the diffusivities at the onset of instability are lowered when the electric field tends to separate the species spatially. The predictions of the linear stability analysis based on a thin-front approximation are confirmed by the numerical integration of the full two-dimensional system.

1.
Y. Kuramoto, in Dynamics of Synergetic Systems, edited by H. Haken (Springer, Berlin, 1980), p. 134.
2.
D.
Horváth
,
V.
Petrov
,
S. K.
Scott
, and
K.
Showalter
,
J. Chem. Phys.
98
,
6332
(
1993
).
3.
D.
Horváth
and
K.
Showalter
,
J. Chem. Phys.
102
,
2471
(
1995
).
4.
D.
Horváth
and
Á.
Tóth
,
J. Chem. Phys.
108
,
1447
(
1998
).
5.
Á.
Tóth
,
B.
Veisz
, and
D.
Horváth
,
J. Phys. Chem. A
102
,
5157
(
1998
).
6.
S.
Schmidt
and
P.
Ortoleva
,
J. Chem. Phys.
67
,
3771
(
1977
).
7.
D.
Šnita
,
H.
Ševčı́ková
,
M.
Marek
, and
J. H.
Merkin
,
J. Phys. Chem.
100
,
18740
(
1996
).
8.
J. H.
Merkin
,
H.
Ševčı́ková
,
D.
Šnita
, and
M.
Marek
,
IMA J. Appl. Math.
60
,
1
(
1998
).
9.
H.
Ševčı́ková
and
M.
Marek
,
Physica D
13
,
379
(
1984
).
10.
A very recent work has also studied the effect of external fields on the stability of planar fronts by using the Kuramoto–Sivashinsky equation:
A. B.
Rovinsky
,
A. M.
Zhabotinsky
, and
I. R.
Epstein
,
Phys. Rev. E
58
,
5541
(
1998
).
11.
H.
Ševčı́ková
,
M.
Marek
, and
S. C.
Müller
,
Science
257
,
951
(
1992
).
12.
G. I.
Sivashinsky
,
Combust. Sci. Technol.
15
,
137
(
1977
).
13.
B. F.
Edwards
,
J. W.
Wilder
, and
K.
Showalter
,
Phys. Rev. A
43
,
749
(
1991
).
14.
J.
Billingham
and
D. J.
Needham
,
Philos. Trans. R. Soc. London, Ser. A
334
,
1
(
1991
).
15.
The numerical integration was carried out on a 501×401 grid using an operator splitting method with a Crank–Nicholson scheme. A grid spacing of 0.9 and a time step of 0.01 were used.
16.
R. A.
Milton
and
S. K.
Scott
,
Proc. R. Soc. London, Ser. A
452
,
391
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.