The Green-Kubo formalism for evaluating transport coefficients by molecular dynamics has been applied to flexible, multicenter models of linear and branched alkanes in the gas phase and in the liquid phase from ambient conditions to close to the triple point. The effects of integration time step, potential cutoff and system size have been studied and shown to be small compared to the computational precision except for diffusion in gaseous n-butane. The RATTLE algorithm is shown to give accurate transport coefficients for time steps up to a limit of 8 fs. The different relaxation mechanisms in the fluids have been studied and it is shown that the longest relaxation time of the system governs the statistical precision of the results. By measuring the longest relaxation time of a system one can obtain a reliable error estimate from a single trajectory. The accuracy of the Green-Kubo method is shown to be as good as the precision for all states and models used in this study even when the system relaxation time becomes very long. The efficiency of the method is shown to be comparable to nonequilibrium methods. The transport coefficients for two recently proposed potential models are presented, showing deviations from experiment of 0%–66%.

1.
P. J.
Daivis
and
D. J.
Evans
,
J. Chem. Phys.
103
,
4261
(
1995
).
2.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
3.
J. P.
Ryckaert
and
A.
Bellemans
,
Discuss. Faraday Soc.
66
,
95
(
1978
).
4.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
6638
(
1984
).
5.
J. I.
Siepmann
,
M. G.
Martin
,
C. J.
Mundy
, and
M. L.
Klein
,
Mol. Phys.
90
,
687
(
1997
).
6.
B.
Smit
,
S.
Karaborni
, and
J. I.
Siepman
,
J. Chem. Phys.
102
,
2126
(
1995
).
7.
S.
Toxvaerd
,
J. Chem. Phys.
107
,
5197
(
1997
).
8.
S.
Toxvaerd
,
J. Chem. Phys.
93
,
4290
(
1990
).
9.
P.
Padilla
and
S.
Toxvaerd
,
J. Chem. Phys.
94
,
5650
(
1991
).
10.
D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications (Academic, San Diego, 1996).
11.
M. S.
Green
,
J. Chem. Phys.
22
,
398
(
1954
);
R.
Kubo
,
J. Phys. Soc. Jpn.
12
,
570
(
1957
);
P. J.
Daivis
and
D. J.
Evans
,
J. Chem. Phys.
100
,
541
(
1994
).
12.
J.-M. Simon, A. H. Fuchs, and B. Rousseau (unpublished).
13.
Even using configurationally biased MC it is almost impossible to obtain convergence for long alkanes at very high densities.
14.
D.
Brown
and
J. H. R.
Clarke
,
J. Chem. Phys.
92
,
3062
(
1990
).
15.
M. Allen and D. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
16.
C. J.
Mundy
,
M. L.
Klein
, and
J. I.
Siepmann
,
J. Phys. Chem.
100
,
16779
(
1996
).
17.
M.
Mondello
and
G. S.
Grest
,
J. Chem. Phys.
106
,
9327
(
1997
).
18.
The expression (20) for the internal energy also shows that the torsion energy and intramolecular LJ interaction energy should be zero in the equilibrium configuration in order to compute a correct heat flux. We have not applied any correction to the intramolecular LJ energy and assume this effect to be small.
19.
D. J. Evans and G. Morriss, Statistical Mechanics of Nonequilibrium Liquids (Academic, London, 1990), p. 105.
20.
C. J.
Mundy
,
J. I.
Siepmann
, and
M. L.
Klein
,
J. Chem. Phys.
102
,
3376
(
1995
).
21.
A.
Boutin
,
A.
MacGie
, and
B.
Tavitian
,
Mol. Simul.
19
,
1
(
1997
).
22.
B. Rousseau, J.-M. Simon, and A. H. Fuchs (unpublished).
23.
J. M. Haile, Molecular Dynamics Simulation (Wiley, New York, 1992), p. 151.
24.
J. J.
Erpenbeck
and
W. W.
Wood
,
Phys. Rev. A
32
,
412
(
1985
).
25.
We have not reported the thermal conductivities because the initial relaxation time is only 20 fs (see discussion in Sec. III C 5). The integrals of λ(t) for the different time steps are, however, all within ±2%.
26.
S. T.
Cui
,
S. A.
Gupta
,
P. T.
Cummings
, and
H. D.
Cochran
,
J. Chem. Phys.
105
,
1214
(
1996
).
27.
W.
Allen
and
R. L.
Rowley
,
J. Chem. Phys.
106
,
10273
(
1997
).
28.
J. J.
Erpenbeck
,
Phys. Rev. A
39
,
4718
(
1989
).
29.
R.
Edberg
,
D. J.
Evans
, and
G. P.
Morriss
,
J. Chem. Phys.
84
,
6933
(
1986
).
30.
P. J.
Daivis
and
D. J.
Evans
,
Mol. Phys.
81
,
1289
(
1994
).
31.
K. P.
Travis
,
D.
Brown
, and
J. H. R.
Clarke
,
J. Chem. Phys.
98
,
1524
(
1993
).
32.
J.-P.
Ryckaert
,
A.
Bellemans
,
G.
Ciccotti
, and
G.
Paolini
,
Phys. Rev. A
39
,
259
(
1989
).
33.
J. J.
Erpenbeck
,
Phys. Rev. A
35
,
218
(
1987
).
34.
A. L. Lee, API Report No. 70-128, 1965.
35.
A. F.
Collings
and
E.
McLaughlin
,
Trans. Faraday Soc.
67
,
340
(
1971
).
36.
M. J.
Assael
,
J. H.
Dymond
,
M.
Papadaki
, and
P. M.
Patterson
,
Int. J. Thermophys.
13
,
269
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.