A Tikhonov regularization method is used to estimate the orientational distribution function from deuteron NMR line shapes. Two sets of data, obtained for different orientations of a sample with respect to the magnetic field, are used in the regularization procedure to overcome the ambiguity arising from the superposition of the two NMR transitions of the spin I=1 system. A refined model of the NMR signal that takes into account line shape distortions resulting from finite pulse duration is developed. Tests on simulated data show that the results of the regularization procedure obtained with this model and a simple one that does not consider the finite pulse width differ significantly for broad spectra. The regularization method is applied to lyotropic liquid crystals of surfactant/water mixtures. The director distributions estimated for both hexagonal and lamellar lyomesophases give evidence of director undulations in the hexagonal phase.

1.
Structure and Properties of Oriented Polymers, edited by I. M. Ward, 2nd ed. (Chapman and Hall, London, 1997).
2.
J. W. Doane and G. P. Crawford, in Encyclopedia of Nuclear Magnetic Resonance, edited by D. M. Grant and R. K. Harris (Wiley, Chichester, 1996), p. 3663.
3.
K. Schmidt-Rohr and H. W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic, London, 1994).
4.
G. L. Hoatson and R. L. Vold, in NMR—Basic Principles and Progress, edited by P. Diehl, E. Fluck, H. Günther, R. Kosfeld, J. Seelig, and B. Blümich (Springer, Berlin, 1994), Vol. 32, p. 1.
5.
R.
Hentschel
,
H.
Sillescu
, and
H. W.
Spiess
,
Polymer
22
,
1516
(
1981
).
6.
H. W. Spiess, in Developments in Oriented Polymers, edited by I. M. Ward (Applied Science, Barking, 1982), Vol. 1.
7.
R.
Hentschel
,
J.
Schlitter
,
H.
Sillescu
, and
H. W.
Spiess
,
J. Chem. Phys.
68
,
56
(
1978
).
8.
A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-Posed Problems (Wiley, New York, 1977).
9.
C. W. Groetsch, The Theory of Tikhonov Regularization for Fredholm Equations of the First Kind (Pitman, Boston, 1984).
10.
J. Skilling, Maximum Entropy and Bayesian Methods (Kluwer, Dordrecht, 1989).
11.
B. Buck and V. A. Macaulay, Maximum Entropy in Action (Clarendon, Oxford, 1991).
12.
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
213
(
1982
).
13.
S. W.
Provencher
,
Comput. Phys. Commun.
27
,
229
(
1982
).
14.
J.
Honerkamp
and
J.
Weese
,
Continuum Mech. Thermodyn.
2
,
17
(
1990
).
15.
J.
Weese
,
Comput. Phys. Commun.
69
,
99
(
1992
).
16.
D. A.
Grabowski
and
J.
Honerkamp
,
J. Chem. Phys.
96
,
2629
(
1992
).
17.
H.
Schäfer
and
R.
Stannarius
,
J. Magn. Reson., Ser. B
106
,
14
(
1995
).
18.
H.
Schäfer
and
H.
Bauch
,
Phys. Lett. A
199
,
93
(
1995
).
19.
H.
Schäfer
,
B.
Mädler
, and
F.
Volke
,
J. Magn. Reson., Ser. A
116
,
145
(
1995
).
20.
A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, Oxford, 1961).
21.
D. Freude and J. Haase, in NMR Basic Principles and Progress (Springer, Heidelberg, 1993), Vol. 29, p. 1.
22.
C. P. Slichter, Principles of Magnetic Resonance (Springer, Berlin, 1980).
23.
J.
Stohrer
,
G.
Gröbner
,
D.
Reimer
,
K.
Weisz
,
C.
Mayer
, and
G.
Kothe
,
J. Chem. Phys.
95
,
672
(
1991
).
24.
D.
Reimer
,
N.
Heaton
,
A.
Schleicher
,
K.
Müller
, and
G.
Kothe
,
J. Chem. Phys.
100
,
1693
(
1994
).
25.
N.
Heaton
,
D.
Reimer
, and
G.
Kothe
,
J. Non-Cryst. Solids
172–174
,
917
(
1994
).
26.
C. E. Fairhurst, S. Fuller, J. Gray, M. C. Holmes, and G. J. T. Tiddy, in Handbook of Liquid Crystals (Wiley-VCH, Weinheim, 1998), Vol. 3, p. 341.
27.
R.
Strey
,
R.
Schomäcker
,
D.
Roux
,
F.
Nallet
, and
U.
Olsson
,
J. Chem. Soc., Faraday Trans.
86
,
2253
(
1990
).
28.
H. Albrecht, Ph.D. dissertation, Albert-Ludwigs-Universität, Freiburg, 1997.
29.
P.
Oswald
,
J. C.
Géminard
,
L.
Lejcek
, and
L.
Sallen
,
J. Phys. II
6
,
281
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.