We have employed Langmuir monolayers of highly asymmetric polydimethylsiloxane-polystyrene (PDMS-PS) diblock copolymers on dioctyl phthalate (DOP) at temperatures ranging from 22 to −35 °C as a model system for tethered chains in poor solvent conditions. The thicknesses of the tethered PS layers extending into the DOP subphase, measured by neutron reflection, decrease with decreasing temperature (T) over this entire range. However, the variation with T becomes weak below −20 °C. At the lowest T, the layer thicknesses are 55%–75% of the values at the theta condition (Tθ=22 °C). The contraction of the layer with decreasing T is determined as a function of surface density and molecular weight, and these data are compared to universal scaling forms. The PS segments are depleted from the near surface region over the entire T range, with the thickness of the depletion layer increasing slightly with decreasing T. The free energy of the surface layer is probed by surface tension measurements. With decreasing T, negative surface pressures are observed at low coverages for both PDMS-PS and PDMS monolayers, indicating metastability toward lateral phase separation. Evidence for a transition from a dispersed phase to a condensed phase with decreasing T was observed in the reflectivity for very low PDMS-PS coverage. At high coverage where the submerged blocks are strongly interacting at 22 °C, only a modest decrease in surface pressure is observed over the experimental range of T despite the strong contraction. This latter result is discussed in terms of the relative contributions of enthalpic and entropic effects to the surface pressure.

1.
A.
Halperin
,
M.
Tirrell
, and
T. P.
Lodge
,
Adv. Polym. Sci.
100
,
31
(
1992
).
2.
I.
Szleifier
,
Adv. Chem. Phys.
94
,
165
(
1996
).
3.
G. S. Grest and M. Murat, Monte Carlo and Molecular Dynamics Simulations in Polymer Science, edited by K. Binder (Clarendon, Oxford, 1994).
4.
S. T.
Milner
,
Science
251
,
905
(
1991
).
5.
E.
Raphael
and
P. G.
de Gennes
,
J. Phys. Chem.
96
,
4002
(
1992
);
H.
Ji
and
P. G.
de Gennes
,
Macromolecules
26
,
520
(
1993
).
6.
M.
Amiji
and
K.
Park
,
Sci. Polym. Ed.
4
,
217
(
1993
).
7.
D. H. Napper, Polymeric Stabilization of Colloid Dispersions (Academic, New York, 1983).
8.
A.
Halperin
,
J. Phys. (France)
49
,
547
(
1988
).
9.
D. F. K.
Shim
and
M. E.
Cates
,
J. Phys. (Paris)
50
,
3535
(
1989
).
10.
E. B.
Zhulina
,
O. V.
Borisov
,
V. A.
Pryamitsyn
, and
T. M.
Birshtein
,
Macromolecules
24
,
140
(
1991
).
11.
M.
Muthukumar
and
J. S.
Ho
,
Macromolecules
22
,
965
(
1989
).
12.
M. D.
Whitmore
and
J.
Noolandi
,
Macromolecules
23
,
3321
(
1990
).
13.
K.
Huang
and
A.
Balazs
,
Macromolecules
26
,
4736
(
1993
).
14.
C.
Yeung
,
A. C.
Balazs
, and
D.
Jasnow
,
Macromolecules
26
,
1914
(
1993
).
15.
M. A.
Carignano
and
I.
Szleifier
,
J. Chem. Phys.
100
,
3210
(
1994
).
16.
H.
Tang
,
M. A.
Carignano
, and
I.
Szleifier
,
J. Chem. Phys.
102
,
3404
(
1995
).
17.
P. Y.
Lai
and
K.
Binder
,
J. Chem. Phys.
95
,
9288
(
1991
).
18.
P. Y.
Lai
,
Comput. Polym. Sci.
2
,
157
(
1992
).
19.
J. D.
Weinhold
and
S. K.
Kumar
,
J. Chem. Phys.
101
,
4312
(
1994
).
20.
K. G.
Soga
,
H.
Guo
, and
M. J
Zuckermann
,
Europhys. Lett.
29
,
531
(
1995
).
21.
G. S.
Grest
and
M.
Murat
,
Macromolecules
26
,
3108
(
1993
);
G. S.
Grest
,
Macromolecules
27
,
418
(
1994
).
22.
E. A.
Di Marzio
,
Macromolecules
17
,
969
(
1984
).
23.
I. C.
Sanchez
,
Macromolecules
12
,
980
(
1979
).
24.
C.
Williams
,
F.
Brochard
, and
H.
Firsch
,
Annu. Rev. Phys. Chem.
32
,
433
(
1981
).
25.
D. R. M.
Williams
,
J. Phys. II
3
,
1313
(
1993
).
26.
D.
Perahia
,
D. G.
Wiesler
,
S. K.
Satija
,
L. J.
Fetters
,
S. K.
Sinha
, and
S. L.
Milner
,
Phys. Rev. Lett.
72
,
100
(
1994
);
D.
Perahia
,
D. G.
Wiesler
,
S. K.
Satija
,
L. J.
Fetters
,
S. K.
Sinha
, and
G. S.
Grest
,
Physica B
221
,
337
(
1996
).
27.
P.
Auroy
,
L.
Auvray
, and
L.
Leger
,
Macromolecules
24
,
2523
(
1991
).
28.
P.
Auroy
,
L.
Auvray
, and
L.
Leger
,
Macromolecules
25
,
4134
(
1992
).
29.
A.
Karim
,
S. K.
Satija
,
J. F.
Douglas
,
J. F.
Ankner
, and
L. J.
Fetters
,
Phys. Rev. Lett.
73
,
3407
(
1994
).
30.
A.
Karim
,
J. F.
Douglas
,
F.
Horkay
,
L. J.
Fetters
, and
S. K.
Satija
,
Physica B
221
,
331
(
1996
).
31.
P. Gallagher and S. Satija, Proceedings of the Fifth Surface X-Ray and Neutron Scattering Conference, Oxford, July 1994;
P. Gallagher and S. Satija, Proceedings of the International Conference on Neutron Scattering, Toronto, August 1997.
32.
S. M. Baker, N. Melosh, E. Torgerson, G. Smith, C. Toprakcioglu, and A. Vradis (in preparation).
33.
S. J.
O’Shea
,
M. ER.
Welland
, and
T.
Rayment
,
Langmuir
9
,
1826
(
1993
).
34.
W.
Zhao
,
G.
Krausch
,
M. H.
Rafailovich
, and
J.
Sokolov
,
Macromolecules
27
,
2933
(
1994
).
35.
A.
Karim
,
V. V.
Tsukruk
,
J. F.
Douglas
,
S. K.
Satija
,
L. J.
Fetters
,
D. H.
Reneker
, and
M. D.
Foster
,
J. Phys. II
5
,
1441
(
1995
).
36.
S. M. Baker, A. Callahan, G. Smith, C. Toprakcioglu, and A. Vradis (in preparation).
37.
M. S.
Kent
,
L. T.
Lee
,
B.
Farnoux
, and
F.
Rondelez
,
Macromolecules
22
,
1449
(
1989
).
38.
B. J.
Factor
,
L. T.
Lee
,
M. S.
Kent
, and
F.
Rondelez
,
Phys. Rev. E
48
,
2354
(
1993
).
39.
M. S.
Kent
,
L. T.
Lee
,
B. J.
Factor
,
F.
Rondelez
, and
G.
Smith
,
J. Chem. Phys.
103
,
2320
(
1995
).
40.
M. S.
Kent
,
J.
Majewski
,
G.
Smith
,
L. T.
Lee
, and
S.
Satija
,
J. Chem. Phys.
108
,
5635
(
1998
).
41.
L. T.
Lee
,
B. J.
Factor
,
M. S.
Kent
, and
F.
Rondelez
,
J. Chem. Soc., Faraday Discuss.
98
,
139
(
1994
).
42.
L. T.
Lee
and
M. S.
Kent
,
Phys. Rev. Lett.
13
,
2899
(
1997
).
43.
F. E.
Runge
,
M. S.
Kent
, and
H.
Yu
,
Langmuir
10
,
1962
(
1994
).
44.
M. S.
Kent
,
B. J.
Factor
,
S.
Satija
,
P.
Gallagher
, and
G. S.
Smith
,
Macromolecules
29
,
2843
(
1996
).
45.
G. C.
Berry
,
J. Chem. Phys.
44
,
4550
(
1966
).
46.
H.
Ahrens
,
S.
Forster
, and
C. A.
Helm
,
Macromolecules
30
,
8447
(
1997
).
47.
Use of a commercial product does not imply recommendation or endorsement by NIST, nor does it imply that the product is necessarily the best available.
48.
N. P.
Balsara
,
D.
Perahia
,
C. R.
Safinya
,
M.
Tirrell
, and
T. P.
Lodge
,
Macromolecules
25
,
3896
(
1992
).
49.
I. H.
Park
,
Q. W.
Wang
, and
B.
Chu
,
Macromolecules
20
,
1965
(
1987
).
50.
M.
Zrinyi
and
F.
Horkay
,
Macromolecules
22
,
394
(
1989
).
51.
For a surface with heterogeneity on a scale which is large compared with the coherence length of the neutron beam, the reflectivity is an area-weighted average of the intensity reflected from each region. In the present case, the area fraction occupied by the islands of copolymer cannot be determined precisely because the reflectivity from the islands is not known. However, an upper bound of 20% is obtained using the reflectivity from the dispersed state in the inset to Fig. 7. The dimension of the tethered layer normal to the surface is nearly the same in the islands as in the dispersed state, as can be seen from the comparable peak positions for the data at −30 °C in Fig. 7 and in the inset.
52.
S. Wu, Polymer Interface and Adhesion (Marcel Dekker, New York, 1982).
53.
R.
Baranowski
and
M. D.
Whitmore
,
J. Chem. Phys.
103
,
2340
(
1995
).
54.
R.
Baranowski
and
M. D.
Whitmore
,
J. Chem. Phys.
108
,
9885
(
1998
).
55.
B.
Chu
,
I. H.
Park
,
Q. W.
Wang
, and
C.
Wu
,
Macromolecules
20
,
2833
(
1987
).
56.
P.
Stepanek
,
C.
Konak
, and
B.
Sedlacek
,
Macromolecules
15
,
1214
(
1992
).
57.
C.
Wu
and
S.
Zhou
,
Macromolecules
28
,
8381
(
1995
);
X.
Wang
,
X.
Qiu
, and
C.
Wu
,
Macromolecules
31
,
2972
(
1998
).
58.
J.
Li
,
S.
Harville
, and
J. W.
Mays
,
Macromolecules
30
,
466
(
1997
).
59.
Since Rg for a free PS chain in dilute DOP solution is not available at the lower temperatures of this study, we estimated the value of Σ at −30 °C using the contraction of the layer normal to the surface in the limit of Σ⩽1 i.e., Σ−30 °Cθ×hrms,−30 °C2/hrms2, where hrms,−30 °C/hrms in the limit of Σ⩽1 was evaluated from the data for the lowest σ for each copolymer in Fig. 4(d). Our previous work showed that hrms,good/hrms, θ in the limit of Σ⩽1 is an excellent approximation to Rg,good/Rg,θ (Ref. 40), and here we assume that the same holds for the ratios in theta and poor solvents.
60.
Our previous work has shown that the hrms/Rg is a linear function of Σ over this range (Ref. 40).
61.
This upper limit for the magnitude of the temperature gradient through the liquid was determined by varying the vertical position of the thermocouple, which resulted in a variation of 3.4° at the lowest temperature. This is an upper limit since the thermocouple may have been partially exposed to the air above the liquid at its highest vertical position. A different method with finer spatial resolution is required to precisely determine the gradient. In addition to the above, the fact that the surface tension continues to increase nearly linearly down to the lowest temperatures (see Fig. 6) indicates that the surface layer is experiencing nearly the same variation in temperature as that measured by the thermocouple down to the lowest temperatures. From the linearity in the data for DOP, the temperature gradient would appear to be less than 4 °C.
62.
This relationship is equivalent to the analytical SCF result derived by Zhulina et al. if hrms and hdry are evaluated in the strong stretching limit.
63.
E. K.
Mann
,
S.
Henon
,
D.
Langevin
, and
J.
Meunier
,
J. Phys. II
2
,
1683
(
1992
).
64.
R. Baranowski, Ph.D. thesis, Department of Physics, Memorial University of Newfoundland, 1997.
65.
The ratio of the layer height in good and theta solvents is 0.55 for the 28–330 copolymer at σ=7.3×10−5 chains/Å2, and 0.59 for the 20–170 copolymer at σ=1.5×10−4 chains/Å2. These values are comparable to the hrms/hrms values at τ=−0.21 in Fig. 4(a).
This content is only available via PDF.
You do not currently have access to this content.