We propose an alternative approach to self-diffusion in an atomic liquid. Our starting point is an oscillatory motion of a tagged particle in its first solvation shell (cage). Only after cage relaxation is taken into account is the tagged particle able to diffuse. This approach is suitable for describing liquids where the concept of binary collisions breaks down and the self-diffusion coefficient is small. Our predictions quantitatively agree with the results of MD simulations in a broad range of densities and temperatures up to the freezing transition.
REFERENCES
1.
M. J.
Maroncelli
, J. Mol. Liq.
57
, 1
(1993
), and references therein.2.
3.
C. B.
Harris
, D. E.
Smith
, and D. J.
Russel
, Chem. Rev.
90
, 481
(1990
).4.
B. J.
Berne
, M. E.
Tuckerman
, J. E.
Straub
, and A. L. R.
Bug
, J. Chem. Phys.
93
, 5084
(1990
);G.
Goodyear
, R. E.
Larsen
, and R. M.
Stratt
, Phys. Rev. Lett.
76
, 243
(1996
);5.
6.
7.
8.
9.
10.
11.
12.
M. H.
Ernst
, E. H.
Hauge
, and J. M. J.
van Leeuwen
, Phys. Rev. Lett.
25
, 1254
(1972
).13.
J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1990).
14.
15.
16.
17.
18.
19.
E.
Rabani
, J. D.
Gezelter
, and B. J.
Berne
, J. Chem. Phys.
107
, 6867
(1997
).20.
M.
Buchner
, B. M.
Ladanyi
, and R. M.
Stratt
, J. Chem. Phys.
97
, 8522
(1992
);21.
22.
J. D.
Gezelter
, E.
Rabani
, and B. J.
Berne
, J. Chem. Phys.
107
, 4618
(1997
).23.
See also,
T.
Keyes
, W.-X.
Li
, and U.
Zurcher
, J. Chem. Phys.
109
, 4693
(1998
);J. D.
Gezelter
, E.
Rabani
, and B. J.
Berne
, J. Chem. Phys.
109
, 4695
(1998
).24.
Interestingly, the first part of our program has been applied to a hard sphere fluid by
Tang
and Evans
[Phys. Rev. Lett.
72
, 1666
(1994
)]. These authors used a harmonic mode model for self-diffusion; for high densities their VACF agrees well with the MD data; they did not include cage relaxation and therefore could not calculate the self-diffusion coefficient. Harmonic motion has also been invoked in a study of the hard sphere crystal dynamics [25.
26.
P. Résibois and M. De Leener, Classical Kinetic Theory of Fluids (Wiley, New York, 1977).
27.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge University Press, New York, 1992).
28.
This content is only available via PDF.
© 1999 American Institute of Physics.
1999
American Institute of Physics
You do not currently have access to this content.