Diffusivities of pseudoplanar molecules at trace concentration in methanol have been measured at 298.2 K using Taylor’s dispersion method. The data of the polar and nonpolar aromatic solutes are compared, and the effects due to solute–solvent interactions on diffusion, together with the solvation numbers, are determined. In this study, the effects are combined with the recently developed solute hydrogen-bond scales to unravel hydrogen bonding between solute and solvent. It is found that the degrees of association of the solutes with methanol decrease in the sequence hydroquinone>aromatic acids>phenols>aromatic amines>aprotic aromatic compounds. Except for o-nitrophenol, which is capable of intramolecular hydrogen bonding, all aromatic acids, phenols, and amines studied behave more as hydrogen-bond donor than acceptor in methanol. The present work also indicates that motions of associated molecules can be understood in terms of the molecular behavior of nonassociated solutes and the hydrogen-bond acidity/basicity of polar solutes.

1.
See, for example (a)
A.
Bhattacharya
,
S. D.
Mahanti
, and
A.
Chakrabarti
,
J. Chem. Phys.
108
,
10281
(
1998
);
(b)
D. M.
Rudkevich
and
J.
Rebek
, Jr.
,
Angew. Chem. Int. Ed. Engl.
36
,
846
(
1997
);
(c)
L. R.
MacGillivray
,
R. H.
Groeneman
, and
J. L.
Atwood
,
J. Am. Chem. Soc.
120
,
2676
(
1998
);
(d)
R.
Goetz
and
R.
Lipowsky
,
J. Chem. Phys.
108
,
7397
(
1998
).
2.
See, for example (a)
T. W.
Bell
and
Z.
Hou
,
Angew. Chem. Int. Ed. Engl.
36
,
1536
(
1997
);
(b)
J. N. H.
Reek
,
A. H.
Priem
,
H.
Engelkamp
,
A. E.
Rowan
,
J. A. A. W.
Elemans
, and
R. J. M.
Nolte
,
J. Am. Chem. Soc.
119
,
9956
(
1997
);
(c)
M.
Egli
,
Angew. Chem. Int. Ed. Engl.
36
,
480
(
1997
).
3.
For reviews, see (a) G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Springer, Berlin, 1991);
(b) Modeling the Hydrogen Bond, edited by D. A. Smith, ACS Symposium Series, 569 (American Chemical Society, Washington, DC, 1994);
(c) The Hydrogen Bond, edited by P. Schuster (North-Holland, Amsterdam, 1976).
4.
O. M.
Cabarcos
,
C. J.
Weinheimer
, and
J. M.
Lisy
,
J. Chem. Phys.
108
,
5151
(
1998
).
5.
G.
Sese
and
J. A.
Padro
,
J. Chem. Phys.
108
,
6347
(
1998
).
6.
M.
Masella
and
J. P.
Flament
,
J. Chem. Phys.
108
,
7141
(
1998
).
7.
S. J.
Humphrey
and
D. W.
Pratt
,
J. Chem. Phys.
106
,
908
(
1997
).
8.
H.
Shirota
,
H.
Pal
,
K.
Tominaga
, and
K.
Yoshihara
,
J. Phys. Chem.
100
,
14575
(
1996
).
9.
P. W.
Schultz
,
G. E.
Leroi
, and
A. I.
Popov
,
J. Am. Chem. Soc.
118
,
10617
(
1996
).
10.
M. L.
Chan
and
T. C.
Chan
,
J. Phys. Chem.
99
,
5765
(
1995
).
11.
N.
Chen
and
T. C.
Chan
,
J. Chem. Soc. Chem. Commun.
1997
,
719
.
12.
R. W. Taft and J. S. Murray, in Quantitative Treatments of Solute/Solvent Interactions, edited by P. Politzer and J. S. Murray (Elsevier, Amsterdam, 1994), pp. 52–82.
13.
T. C.
Chan
,
N. L.
Ma
, and
N.
Chen
,
J. Chem. Phys.
107
,
1890
(
1997
).
14.
M. H.
Abraham
,
J. Phys. Org. Chem.
6
,
660
(
1993
).
15.
M. H. Abraham, in Quantitative Treatments of Solute/Solvent Interactions, edited by P. Politzer and J. S. Murray (Elsevier, Amsterdam, 1994), pp. 83–134.
16.
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
219
,
186
(
1953
);
G. I.
Taylor
,
Proc. R. Soc. London, Ser. A
225
,
473
(
1954
).
17.
E.
Grushka
and
E. J.
Kikta
, Jr.
,
J. Am. Chem. Soc.
98
,
643
(
1976
).
18.
T. C.
Chan
and
M. L.
Chan
,
J. Chem. Soc., Faraday Trans.
88
,
2371
(
1992
);
T. C.
Chan
and
M. L.
Chan
,
J. Chem. Soc., Faraday Trans.
89
,
867
(
1993
).
19.
A.
Bondi
,
J. Phys. Chem.
68
,
441
(
1964
).
20.
J. T.
Edward
,
Chem. Ind. (London)
1956
,
774
.
21.
A. I. Kitaigorodskii, Organic Chemical Crystallography (Consultants Bureau, New York, 1961).
22.
A. E.
Luzkii
,
Russ. J. Phys. Chem.
28
,
204
(
1954
).
23.
P.
Chang
and
C. R.
Wilke
,
J. Phys. Chem.
59
,
592
(
1955
).
This content is only available via PDF.
You do not currently have access to this content.