We propose a reduced model of proteins and simulate folding of a designed three helix bundle protein with 54 residues, the dynamics of a random heteropolymer, and the helix formation of a short peptide, up to ∼1 μs, near the estimated lower bound of folding time. The model has explicit backbone atoms, while solvent effects are taken into account via effective potentials. Interactions include two multibody terms; (1) the hydrogen bond strength reflecting the local dielectric constant that is dependent on protein configuration and (2) the hydrophobic force which depends on the local density of peptide atoms imitating the solvent accessible surface area model of hydrophobic force. With this model, all trajectories of a designed protein reach a native like conformation within 0.5 μs although they exhibit some remaining residual fluctuations. On the other hand, a random polymer collapses to several nonspecific compact forms and continues to change its global shape. A 16 residue segment forming a helix in the designed protein does not stably form a helix when it is cleaved, illustrating the effect of nonadditivity.

1.
J. D.
Bryngelson
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. USA
84
,
7524
(
1987
).
2.
J. D.
Bryngelson
,
J. N.
Onuchic
,
N. D.
Socci
, and
P. G.
Wolynes
,
Proteins: Struct., Funct., Genet.
21
,
167
(
1995
).
3.
P. G.
Wolynes
,
Z.
Luthey-Schulten
, and
J. N.
Onuchic
,
Chem. Biol.
3
,
425
(
1996
).
4.
B.
Nölting
,
R.
Golbik
, and
A. R.
Fersht
,
Proc. Natl. Acad. Sci. USA
92
,
10668
(
1995
).
5.
L. A.
Itzhaki
,
D. E.
Otzen
, and
A. R.
Fersht
,
J. Mol. Biol.
254
,
260
(
1995
).
6.
R. M.
Ballew
,
J.
Sabelko
, and
M.
Gruebele
,
Proc. Natl. Acad. Sci. USA
93
,
5759
(
1996
).
7.
R. E.
Burton
,
G. S.
Huang
,
M. A.
Daugherty
,
P. W.
Fullbright
, and
T. G.
Oas
,
J. Mol. Biol.
263
,
1996
(
311
).
8.
V.
Muñoz
,
P. A.
Thompson
,
J.
Hofrichter
, and
W. A.
Eaton
,
Nature (London)
390
,
196
(
1997
).
9.
W. A.
Eaton
,
P. A.
Thompson
,
C.
Chan
,
S. J.
Hagen
, and
J.
Hofrichter
,
Structure
4
,
1996
(
1133
).
10.
S. J.
Hagen
,
J.
Hofrichter
,
A.
Szabo
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. USA
93
,
11615
(
1996
).
11.
Y.
Duan
and
P. A.
Kollman
,
Science
282
,
740
(
1998
).
12.
A.
Godzik
,
A.
Kolinski
, and
J.
Skolnick
,
J. Comput. Chem.
14
,
1194
(
1993
).
13.
H.
Nymeyer
,
A. E.
Garcı́a
, and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. USA
95
,
5921
(
1998
).
14.
G. F.
Berriz
,
A. M.
Gutin
, and
E. I.
Shakhnovich
,
J. Chem. Phys.
106
,
9276
(
1997
).
15.
B. M.
Pettitt
and
M.
Karplus
,
Chem. Phys. Lett.
121
,
194
(
1985
).
16.
M.
Pellegrini
,
N.
Gro/nbech-Jensen
, and
S.
Doniach
,
J. Chem. Phys.
104
,
8639
(
1996
).
17.
D.
Eisenberg
and
A. D.
McLachlan
,
Nature (London)
319
,
199
(
1986
).
18.
N.
,
Annu. Rev. Biophys. Bioeng.
12
,
183
1983
;
H.
Abe
and
N.
,
Biopolymers
20
,
1013
(
1980
).
19.
N. D.
Socci
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
J. Chem. Phys.
104
,
5860
(
1996
).
20.
D.
Thirumalai
and
Z.
Guo
,
Biopolymers
35
,
137
(
1995
);
Z.
Guo
and
D.
Thirumalai
,
Biopolymers
36
,
83
(
1995
).
21.
M.
Sasai
,
Proc. Natl. Acad. Sci. USA
92
,
8438
(
1995
).
22.
C.
Hardin
,
Z. A.
Luthey-Schulten
, and
P. G.
Wolynes
,
Proteins: Struct. Func., Genet.
34
,
281
(
1999
).
23.
B.
Honig
and
A.
Yang
,
Adv. Protein Chem.
46
,
27
(
1995
).
24.
J. P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
25.
H. A.
Scheraga
,
Macromolecules
10
,
1
(
1977
).
26.
For example, CHARMM,
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
27.
Z.
Guo
and
D.
Thirumalai
,
J. Mol. Biol.
263
,
323
(
1996
).
28.
L.
Regan
and
W. F.
DeGrado
,
Science
241
,
976
(
1988
).
29.
See, for example,
D. E.
Smith
and
A. D. J.
Haymet
,
J. Chem. Phys.
98
,
6445
(
1993
).
30.
S.
Kumar
,
D.
Bouzida
,
R. H.
Swendsen
,
P. A.
Kollman
, and
J. M.
Rosenberg
,
J. Comput. Chem.
13
,
1011
(
1992
).
31.
W.
Kabsch
and
C.
Sander
,
Biopolymers
22
,
2577
(
1983
).
32.
P. J.
Kraulis
,
Molscript, J. Appl. Crystallogr.
24
,
946
(
1991
).
33.
D. S.
Riddle
,
J. V.
Santiago
,
S. T.
Bray-Hall
,
N.
Doshi
,
V. P.
Grantcharova
,
Q.
Yi
, and
D.
Baker
,
Nature, Struct. Biol.
4
,
805
(
1997
);
P. G. Wolynes, ibid., 871 (1997).
34.
D.
Hamada
,
S.
Segewa
, and
Y.
Goto
,
Nature, Struct. Biol.
3
,
868
(
1996
).
35.
E. M.
Boczko
and
C. L.
Brooks
III
,
Science
269
,
393
(
1995
).
36.
Z.
Guo
,
C. L.
Brooks
III
, and
E. M.
Boczko
,
Proc. Natl. Acad. Sci. USA
94
,
10161
(
1997
).
37.
U. H. E.
Hansmann
,
Y.
Okamoto
, and
J. N.
Onuchic
,
Proteins: Struct. Func., Genet.
34
,
472
(
1999
).
38.
M.
Schaefer
,
C.
Bartels
, and
M.
Karplus
,
J. Mol. Biol.
284
,
835
(
1998
).
39.
M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987).
40.
S.
Takada
and
P. G.
Wolynes
,
Phys. Rev. E
55
,
4562
(
1997
).
41.
J. J.
Portman
,
S.
Takada
, and
P. G.
Wolynes
,
Phys. Rev. Lett.
81
,
5237
(
1998
).
42.
J. N. Onuchic, J. Wang, and P. G. Wolynes, J. Chem. Phys. (in press).
This content is only available via PDF.
You do not currently have access to this content.