Solid–liquid phase diagrams are calculated for binary mixtures of Lennard-Jones spheres using Monte Carlo simulation and the Gibbs–Duhem integration technique of Kofke. We calculate solid–liquid phase diagrams for the model Lennard-Jones mixtures: argon–methane, krypton–methane, and argon–krypton, and compare our simulation results with experimental data and with Cottin and Monson’s recent cell theory predictions. The Lennard-Jones model simulation results and the cell theory predictions show qualitative agreement with the experimental phase diagrams. One of the mixtures, argon–krypton, has a different phase diagram than its hard-sphere counterpart, suggesting that attractive interactions are an important consideration in determining solid–liquid phase behavior. We then systematically explore Lennard-Jones parameter space to investigate how solid–liquid phase diagrams change as a function of the Lennard-Jones diameter ratio, σ1122, and well-depth ratio, ε1122. This culminates in an estimate of the boundaries separating the regions of solid solution, azeotrope, and eutectic solid–liquid phase behavior in the space spanned by σ1122 and ε1122 for the case σ1122<0.85.

1.
M.
Matsuoka
,
Bunri Gijutsu
7
,
245
(
1977
).
2.
X.
Cottin
and
P. A.
Monson
,
J. Chem. Phys.
99
,
8914
(
1993
).
3.
X.
Cottin
and
P. A.
Monson
,
J. Chem. Phys.
102
,
3354
(
1995
).
4.
X. Cottin, Ph.D. thesis, University of Massachusetts, 1996.
5.
X.
Cottin
,
E. P. A.
Paras
,
C.
Vega
, and
P. A.
Monson
,
Fluid Phase Equilibria
117
,
114
(
1996
).
6.
X.
Cottin
and
P. A.
Monson
,
J. Chem. Phys.
105
,
10022
(
1996
).
7.
D. W.
Oxtoby
,
Nature (London)
347
,
725
(
1990
).
8.
S. W.
Rick
and
A. D. J.
Haymet
,
J. Chem. Phys.
90
,
1188
(
1989
).
9.
S. W.
Rick
and
A. D. J.
Haymet
,
J. Phys. Chem.
94
,
5212
(
1990
).
10.
X. C.
Zeng
and
D. W.
Oxtoby
,
J. Chem. Phys.
93
,
4357
(
1990
).
11.
A. R.
Denton
and
N. W.
Ashcroft
,
Phys. Rev. A
42
,
7312
(
1990
).
12.
D. Frenkel and B. Smit, Understanding Molecular Simulations (Academic, San Diego, 1996).
13.
D.
Frenkel
and
A. J. C.
Ladd
,
J. Chem. Phys.
81
,
3188
(
1984
).
14.
R. L. Rowley, Statistical Mechanics for Thermophysical Property Calculations (Prentice Hall, Engelwood Cliffs, New Jersey, 1994).
15.
M. D.
Eldridge
,
P. A.
Madden
, and
D.
Frenkel
,
Nature (London)
365
,
35
(
1993
).
16.
M. D.
Eldridge
,
P. A.
Madden
, and
D.
Frenkel
,
Mol. Phys.
79
,
105
(
1993
).
17.
M. D.
Eldridge
,
P. A.
Madden
, and
D.
Frenkel
,
Mol. Phys.
80
,
987
(
1993
).
18.
W. G. T.
Kranendonk
and
D.
Frenkel
,
Mol. Phys.
72
,
699
(
1991
).
19.
W. G. T.
Kranendonk
and
D.
Frenkel
,
Mol. Phys.
72
,
679
(
1991
).
20.
D. A.
Kofke
,
Mol. Simul.
7
,
285
(
1991
).
21.
D. A.
Kofke
and
E. D.
Glandt
,
J. Chem. Phys.
87
,
4881
(
1987
).
22.
D. A.
Kofke
and
E. D.
Glandt
,
Mol. Phys.
64
,
1105
(
1988
).
23.
W. G.
Hoover
and
F. H.
Ree
,
J. Chem. Phys.
49
,
3609
(
1968
).
24.
M. J.
Vlot
,
J. C.
van Miltenburg
,
H. A. J.
Oonk
, and
J. P.
van der Eerden
,
J. Chem. Phys.
107
,
10102
(
1997
).
25.
J. S. Rowlinson, Liquids and Liquid Mixtures (Butterworth Scientific, London, 1982).
26.
M. J.
Vlot
and
J. P.
van der Eerden
,
J. Chem. Phys.
106
,
2771
(
1997
).
27.
K. S.
Shing
and
K. E.
Gubbins
,
Mol. Phys.
46
,
1109
(
1982
).
28.
M. J.
Vlot
,
S.
Claassen
,
H. E. A.
Huitema
, and
J. P.
van der Eerden
,
Mol. Phys.
91
,
19
(
1997
).
29.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
30.
J. M. Prausnitz, R. N. Lichtenthaler, and E. G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd ed. (Prentice Hall, Englewood Cliffs, New Jersey, 1986).
31.
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
32.
A. Z.
Panagiotopoulos
,
N.
Quirke
,
M.
Stapleton
, and
D. J.
Tildesley
,
Mol. Phys.
63
,
527
(
1988
).
33.
A. Z.
Panagiotopoulos
,
Mol. Simul.
9
,
1
(
1992
).
34.
D. A.
Kofke
,
Mol. Phys.
78
,
1331
(
1993
).
35.
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
36.
R.
Agrawal
,
M.
Mehta
, and
D. A.
Kofke
,
Int. J. Thermophys.
15
,
1073
(
1994
).
37.
R.
Agrawal
and
D. A.
Kofke
,
Mol. Phys.
85
,
43
(
1995
).
38.
M. H. J.
Hagen
E. J.
Meijer
,
G. C. A. M.
Mooij
,
D.
Frenkel
, and
H. N. W.
Lekkerkerker
,
Nature (London)
365
,
425
(
1993
).
39.
E. J.
Meijer
and
D.
Frenkel
,
J. Chem. Phys.
100
,
6873
(
1994
).
40.
F. W.
Tavares
and
S. I.
Sandler
,
AIChE. J.
43
,
218
(
1997
).
41.
D. A. Kofke, in Monte Carlo Methods in Chemistry, edited by D. M. Ferguson, J. I. Siepmann, and D. G. Truhlar (Interscience, New York, 1998), Vol. 105, Chap. 13, p. 405.
42.
M.
Mehta
and
D. A.
Kofke
,
Chem. Eng. Sci.
49
,
2633
(
1994
).
43.
B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 1969).
44.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
45.
J.-P.
Hansen
and
L.
Verlet
,
Phys. Rev.
184
,
151
(
1969
).
46.
P.
van’t Zelfde
,
M. H.
Omar
,
H. G. M.
le Pair-Schroten
, and
Z.
Dokoupil
,
Physica (Amsterdam)
38
,
241
(
1968
).
47.
H.
Veith
and
E.
Schroder
,
Z. Phys. Chem. Abt. A
179
,
16
(
1937
).
48.
R.
Heastie
,
Nature (London)
176
,
747
(
1955
).
49.
W. Hume-Rothery, R. E. Smallman, and C. W. Haworth, The Structure of Metals and Alloys (The Metals and Metallurgy Trust, London, 1969).
50.
A. Prince, Alloy Phase Equilibria (Elsevier, Amsterdam, 1966).
51.
P. Gordon, Principles of Phase Diagrams in Materials Systems (Krieger, Malabar, Florida, 1983).
This content is only available via PDF.
You do not currently have access to this content.