Solvation dynamics of a dye molecule in methanol, acetonitrile, and their deuterated analogs has been measured by the three-pulse stimulated photon echo peak shift. The effects of deuterium substitution on the stationary fluorescence spectra and the time domain data are found to be significant in both solvents. Moreover, the deuterium isotope effects are contrasted in methanol and acetonitrile. The ultrafast component, found to be 200–260 fs, is not slowed down by the deuterium substitution of the hydroxyl group in methanol, and it is even slightly shortened by deuteration in acetonitrile. The isotope dependence and the time scales suggest that the ultrafast component is not originated from the inertial free rotation of the solvent molecules but from collective dispersive solvent motion, at least for the present system. In addition to the ultrafast and ps solvation time scales usually observed in methanol and acetonitrile, a large amplitude ns component is observed in all solvents. The amplitudes of the ns component are substantially different in isotopomers, showing the opposite trend in methanol and acetonitrile.

1.
See, for example, Ultrafast Reaction Dynamics and Solvent Effects, edited by Y. Gauduel and P. J. Rossky, AIP Conference Proceedings 298 (AIP, New York, 1994).
2.
For a review and references, see
M. L.
Horng
,
J. A.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
3.
G. R.
Fleming
and
M.
Cho
,
Annu. Rev. Phys. Chem.
47
,
109
(
1996
).
4.
M.
Cho
,
M.
Du
,
N. F.
Scherer
,
L. D.
Ziegler
, and
G. R.
Fleming
,
J. Chem. Phys.
96
,
5033
(
1992
).
5.
B. M.
Ladanyi
and
S.
Klein
,
J. Chem. Phys.
105
,
1552
(
1996
);
B. M.
Ladanyi
and
Y. Q.
Liang
,
J. Chem. Phys.
103
,
6325
(
1995
).
6.
P. V.
Kumar
and
M.
Maroncelli
,
J. Chem. Phys.
103
,
3038
(
1995
).
7.
B. M.
Ladanyi
and
M.
Maroncelli
,
J. Chem. Phys.
109
,
3204
(
1998
).
8.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).
9.
T.
Joo
,
Y.
Jia
,
J.-Y.
Yu
,
M. J.
Lang
, and
G. R.
Fleming
,
J. Chem. Phys.
104
,
6089
(
1996
).
10.
J. T. Hynes, in Ultrafast Dynamics of Chemical Systems, edited by J. D. Simon (Kluwer, Dordrecht, 1994), p. 345.
11.
M.
Cho
,
J.-Y.
Yu
,
T.
Joo
,
Y.
Nagasawa
,
S. A.
Passino
, and
G. R.
Fleming
,
J. Phys. Chem.
100
,
11944
(
1996
).
12.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
253
,
53
(
1996
);
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
J. Phys. Chem.
100
,
11806
(
1996
).
13.
A. M.
Weiner
,
S.
De Silvestri
, and
E. P.
Ippen
,
J. Opt. Soc. Am. B
2
,
654
(
1985
).
14.
T.
Joo
and
A. C.
Albrecht
,
Chem. Phys.
176
,
233
(
1993
).
15.
M. S.
Skaf
,
T.
Fonseca
, and
B. M.
Ladanyi
,
J. Chem. Phys.
98
,
8929
(
1993
).
16.
H.
Pal
,
Y.
Nagasawa
,
K.
Tominaga
,
S.
Kumazaki
, and
K.
Yoshihara
,
J. Chem. Phys.
102
,
7758
(
1995
).
17.
H.
Shirota
,
H.
Pal
,
K.
Tominaga
, and
K.
Yoshihara
,
J. Phys. Chem.
100
,
14575
(
1996
).
18.
Y.
Zong
and
J. L.
McHale
,
J. Chem. Phys.
106
,
4963
(
1997
);
Y.
Zong
and
J. L.
McHale
,
J. Chem. Phys.
107
,
2920
(
1997
).
19.
H.
Pal
,
Y.
Nagasawa
,
K.
Tominaga
, and
K.
Yoshihara
,
J. Phys. Chem.
100
,
11964
(
1996
);
H.
Shirota
,
H.
Pal
,
K.
Tominaga
, and
K.
Yoshihara
,
J. Phys. Chem.
102
,
3089
(
1998
).
20.
Y. J.
Chang
and
E. W.
Castner
, Jr.
,
J. Phys. Chem.
98
,
9712
(
1994
).
21.
H.
Shirota
,
K.
Yoshihara
,
N. A.
Smith
,
S.
Lin
, and
S. R.
Meech
,
Chem. Phys. Lett.
281
,
27
(
1997
).
22.
J.-C. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic, San Diego, 1996).
23.
L.
Reynolds
,
J. A.
Gardecki
,
S. J. V.
Frankland
,
M. L.
Horng
, and
M.
Maroncelli
,
J. Phys. Chem.
100
,
10337
(
1996
).
24.
T.
Gustavsson
,
L.
Cassara
,
V.
Gulbinas
,
G.
Gurzadyan
,
J.-C.
Mialocq
,
S.
Pommeret
,
M.
Sorgius
, and
P.
van der Meulen
,
J. Phys. Chem.
102
,
4229
(
1998
).
25.
S.-H. Lee and T. Joo (unpublished).
26.
S.-H. Lee, J.-H. Lee, and T. Joo (unpublished results).
27.
Y. Nagasawa and G. R. Fleming (private communication).
28.
H.
Barkhuijsen
,
R.
de Beer
,
W. M. M. J.
Bovée
, and
D.
van Ormondt
,
J. Magn. Reson.
61
,
465
(
1985
).
29.
F. W.
Wise
,
M. J.
Rosker
,
G. L.
Millhauser
, and
C. L.
Tang
,
IEEE J. Quantum Electron.
QE-23
,
1116
(
1987
).
30.
S. H.
Ashworth
,
A.
Kummrow
, and
K.
Lenz
,
J. Raman Spectrosc.
28
,
537
(
1997
).
31.
D.
Bingemann
and
N. P.
Ernsting
,
J. Chem. Phys.
102
,
2691
(
1995
).
32.
A. M.
Jonkman
,
P.
van der Meulen
,
H.
Zhang
, and
M.
Glasbeek
,
Chem. Phys. Lett.
256
,
21
(
1996
).
33.
J.-P.
Fouassier
,
D.-J.
Lougnot
, and
J.
Faure
,
Chem. Phys. Lett.
35
,
189
(
1975
).
34.
T.
Kobayashi
and
S.
Nagakura
,
Chem. Phys.
23
,
153
(
1977
).
35.
S. A.
Kovalenko
,
N. P.
Ernsting
, and
J.
Ruthmann
,
J. Chem. Phys.
106
,
3504
(
1997
).
36.
Y.
Nagasawa
,
S. A.
Passino
,
T.
Joo
, and
G. R.
Fleming
,
J. Chem. Phys.
106
,
4840
(
1997
).
37.
T.
Reinot
,
W.-H.
Kim
,
J. M.
Hayes
, and
G. J.
Small
,
J. Chem. Phys.
104
,
793
(
1996
).
38.
S. J.
Rosenthal
,
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
J. Mol. Liq.
60
,
25
(
1994
).
39.
T.
Joo
,
Y.
Jia
, and
G. R.
Fleming
,
J. Chem. Phys.
102
,
4063
(
1995
).
40.
P.
Cong
,
Y. J.
Yan
,
H. P.
Deuel
, and
J. D.
Simon
,
J. Chem. Phys.
100
,
7855
(
1993
).
41.
W. P.
de Boeij
,
M. S.
Pshenichnikov
,
K.
Duppen
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
224
,
243
(
1994
).
42.
A.
Klamt
and
G.
Schüürmann
,
J. Chem. Soc., Perkin Trans. 2
2
,
799
(
1993
).
43.
B.
Guillot
,
P.
Marteau
, and
J.
Obriot
,
J. Chem. Phys.
93
,
6148
(
1990
).
44.
J. T.
Kindt
and
C. A.
Schmuttenmaer
,
J. Phys. Chem.
100
,
10373
(
1996
).
45.
J.
Ruthmann
,
S. A.
Kovalenko
,
N. P.
Ernsting
, and
D.
Ouw
,
J. Chem. Phys.
109
,
5466
(
1998
).
46.
D.
McMorrow
and
W. T.
Lotshaw
,
J. Phys. Chem.
95
,
10395
(
1991
).
47.
S. J.
Rosenthal
,
X. L.
Xie
,
M.
Du
, and
G. R.
Fleming
,
J. Chem. Phys.
95
,
4715
(
1991
).
48.
F. O.
Raineri
,
H.
Resat
,
B.-C.
Perng
,
F.
Hirata
, and
H. L.
Friedman
,
J. Chem. Phys.
100
,
1477
(
1994
).
49.
K.
Ando
,
J. Chem. Phys.
107
,
4585
(
1997
).
50.
R.
Biswas
,
N.
Nandi
, and
B.
Bagchi
,
J. Phys. Chem.
101
,
2968
(
1997
).
51.
G.
Sesé
and
J. A.
Padró
,
J. Chem. Phys.
108
,
6347
(
1998
).
52.
M.
Maroncelli
,
J. Chem. Phys.
94
,
2084
(
1991
).
53.
T.
Fonseca
and
B. M.
Ladanyi
,
J. Phys. Chem.
95
,
2116
(
1991
);
T.
Fonseca
and
B. M.
Ladanyi
,
J. Mol. Liq.
60
,
1
(
1994
).
54.
In simulations the CH3 groups is usually treated as an united atom, so the moment of inertia of CH3OD along x axis is twice that of CH3OH.
55.
The small Stokes shift is due to a minor change of the dipole moment upon electronic excitation. According to a preliminary AM1/CI calculations, the dipole moments of DTTCI in S0 and S1 are 1.0 and 1.3 D, respectively.
56.
R.
Olender
and
A.
Nitzan
,
J. Chem. Phys.
102
,
7180
(
1995
).
57.
B. D.
Bursulaya
,
D. A.
Zichi
, and
H. J.
Kim
,
J. Phys. Chem.
99
,
10069
(
1995
).
58.
S.-Y.
Lee
and
E. J.
Heller
,
J. Chem. Phys.
71
,
4777
(
1979
);
D. J.
Tannor
and
E. J.
Heller
,
J. Chem. Phys.
77
,
202
(
1982
).
This content is only available via PDF.
You do not currently have access to this content.