A mechanism that may lead to asymmetry between the concentrations of levo and dextro enantiomers is suggested. Under certain conditions, chiral symmetry breaking is possible due to the cooperative effect in solution when the chiral configuration of a molecule is affected by the chirality of others. This effect may lead to a kind of “phase transition” of the system to the state where a presence of only one type of enantiomers, either levo or dextro, is energetically advantageous. Cooperativity results from an increase of the effective radius of the intermolecular interaction due to mobility of molecules in the liquid and gas phases. The kinetics of the reactions, as well as possible ways to the synthesis of the compounds with desirable chirality, are considered. An experiment on chiral symmetry breaking in sodium chlorate crystallization, an example of chiral symmetry breaking in a macro system, is discussed.

1.
R. C.
de L. Milton
,
S. C. F.
Milton
, and
S. B. H.
Kent
,
Science
256
,
1445
(
1992
);
W. F.
Kean
,
C. J. L.
Lock
, and
H. E.
Howard-Lock
,
Lancet
338
,
1565
(
1991
);
P. A.
Lehmann
,
Trends Pharmacol. Sci.
7
,
281
(
1986
).
2.
J. D. Morrison and H. S. Mosher, Asymmetric Organic Reactions (Prentice Hall, New Jersey, 1971).
3.
Y. Izumi and A. Tai, Stereo-Differentiating Reactions (Academic, New York, 1977).
4.
J. Jacques, A. Collet, and S. H. Wilen, Enantiomers, Racemates, and Resolution (Wiley-Interscience, New York, 1981).
5.
M. Nogradi, Stereoselective Synthesis (VCH, Weinheim, 1986).
6.
Asymmetric Synthesis Vol. 1: Analytical Methods, edited by J. D. Morrison (Academic, New York, 1983).
7.
A prochiral molecule is defined as any achiral one that can be stepwise desymmetrized into a chiral molecule:
K.
Mislow
, and
J.
Siegel
,
J. Am. Chem. Soc.
106
,
3319
(
1984
).
8.
G.
Bersuker
,
Ferroelectrics
155
,
7
(
1994
);
G. Bersuker, Abstr. XV Symposium on Molecular Structure, Austin (1994).
9.
H. A.
Jahn
and
E.
Teller
,
Proc. R. Soc. London, Ser. A
161
,
220
(
1937
);
I. B. Bersuker and V. Z. Polinger, Vibronic Interaction in Molecules and Crystals (Springer-Verlag, Berlin, 1989);
R. E. Peierls, Quantum Theory of Solids (Claredon, Oxford, 1955);
J.
Birman
,
Phys. Rev.
125
,
1959
(
1962
);
N. N.
Kristofel
,
Fiz. Tverd. Tela (Leningrad)
6
,
3266
(
1964
).
10.
A. D. Bruce and R. A. Cowley, Structural Phase Transitions (Taylor&Francis, London, 1981);
M. E. Lines, and A. M. Glass, Principles and Application of Ferroelectrics and Related Materials (Claredon, Oxford, 1977);
R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Nolland, Amsterdam, 1974).
11.
D. P.
Craig
and
D. P.
Mellor
,
Top. Curr. Chem.
63
,
1
(
1976
);
Optical Activity and Chiral Discrimination, edited by S. F. Mason (D. Reidel, Dordrecht, 1979). In the weak interaction limit:
L.
Salem
,
X.
Chapuisat
, et al.,
J. Am. Chem. Soc.
109
,
2887
(
1987
);
P. E.
Schipper
,
Aust. J. Chem.
35
,
1513
(
1982
).
12.
G.
Bersuker
, and
M.
Pekker
,
J. Chem. Phys.
110
,
10923
(
1999
), following paper.
13.
V. I. Minkin, O. A. Osipov, and Yu. A. Zhdanov, Dipole Moments in Organic Chemistry (Plenum, New York, 1970).
14.
G. Bersuker, M. Leong, and J. E. Boggs (unpublished).
15.
I. B. Bersuker, The Jahn–Teller Effect and Vibronic Interactions in Modern Chemistry (Plenum, New York, 1984).
16.
J. Israelashvili, Intermolecular and Surface Forces (London, 1991).
17.
T.
Williams
,
R. G.
Pitcher
,
P.
Bommer
,
J.
Gutzwiller
, and
M.
Uskokovic
,
J. Am. Chem. Soc.
97
,
1871
(
1969
).
18.
H.
Wynberg
,
Chimia
30
,
445
(
1976
);
B.
Feringa
, and
H.
Wynberg
,
J. Am. Chem. Soc.
98
,
3372
(
1976
);
B.
Feringa
and
H.
Wynberg
,
Tetrahedron
32
,
2831
(
1976
).
19.
B.
Bosnich
and
M. D.
Fryzuk
,
Top. Stereochem.
12
,
119
(
1981
).
20.
B.
Norden
,
Nature (London)
266
,
567
(
1977
);
L. A.
Hodge
,
F. B.
Dunning
,
G. K.
Walters
,
R. H.
Whit
, and
G. J.
Schroepfer
,Jr.
,
Nature (London)
280
,
250
(
1979
);
D. W.
Gidley
,
A.
Rich
,
J.
Van House
, and
P. W.
Zitzewitz
,
Nature (London)
297
,
639
(
1982
);
R. A.
Hegstrom
,
Nature (London)
297
,
643
(
1982
);
A. S.
Garay
and
J. A.
Ahlgren-Beckendorf
,
Nature (London)
346
,
451
(
1990
);
Chirality—From Weak Bosons to the a-Helix, edited by R. Janoschek (Springer, Berlin, 1991).
21.
D. K.
Kondepudi
,
R. J.
Kaufman
, and
N.
Singh
,
Science
250
,
975
(
1990
).
22.
D. K. Kondepudi and J. Hall, Proc. Conf. on Nonequilibrium Chemical Dynamics, Brussel (1992).
23.
A. D. Randolph and M. A. Larson, Theory of Particulate Processes (Academic, San Diego, 1988).
24.
D. W.
Oxtoby
,
J. Phys.: Condens. Matter
4
,
7627
(
1992
).
25.
P. J. Daudey and E. J. de Jong, Industrial Crystallization 84 (Elsevier Science, New York, 1984).
26.
S. J. Jancic and P. A. M. Grootscholten, Industrial Crystallization (D. Reidel, Dordrecht, 1984).
27.
E. G.
Denk
and
G. D.
Botsaris
,
J. Cryst. Growth
13/14
,
493
(
1972
).
28.
K. L.
Stevenson
and
J. F.
Verdieck
,
J. Am. Chem. Soc.
90
,
2974
(
1968
).
29.
M.
Sakamoto
,
N.
Hokari
,
M.
Takahashi
,
T.
Fujita
,
S.
Watanabe
,
I.
Iida
, and
T.
Nishio
,
J. Am. Chem. Soc.
115
,
818
(
1993
);
A. L.
Roughton
,
M.
Muneer
,
M.
Demuth
,
I.
Klopp
, and
C.
Kruger
,
J. Am. Chem. Soc.
115
,
2085
(
1993
);
G.
Kaupp
, and
M.
Haak
,
Angew. Chem. Int. Ed. Engl.
32
,
694
(
1993
).
30.
N.
Pugliano
and
R. J.
Saykally
,
Science
257
,
1937
(
1992
).
31.
R.
Dappen
,
H. R.
Karfunkel
, and
F. J. J.
Lensen
,
J. Comput. Chem.
11
,
181
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.