We present a hybrid method for molecular dynamics simulations of solutes in complex solvents as represented, for example, by substrates within enzymes. The method combines a quantum mechanical (QM) description of the solute with a molecular mechanics (MM) approach for the solvent. The QM fragment of a simulation system is treated by ab initio density functional theory (DFT) based on plane-wave expansions. Long-range Coulomb interactions within the MM fragment and between the QM and the MM fragment are treated by a computationally efficient fast multipole method. For the description of covalent bonds between the two fragments, we introduce the scaled position link atom method (SPLAM), which removes the shortcomings of related procedures. The various aspects of the hybrid method are scrutinized through test calculations on liquid water, the water dimer, ethane and a small molecule related to the retinal Schiff base. In particular, the extent to which vibrational spectra obtained by DFT for the solute can be spoiled by the lower quality force field of the solvent is checked, including cases in which the two fragments are covalently joined. The results demonstrate that our QM/MM hybrid method is especially well suited for the vibrational analysis of molecules in condensed phase.

1.
D.
Oesterhelt
and
W.
Stoeckenius
,
Nature New Biology
233
,
149
(
1971
).
2.
K. C.
Hasson
,
F.
Gai
, and
P. A.
Afinrud
,
Proc. Natl. Acad. Sci. USA
93
,
15124
(
1996
).
3.
M. F.
Großjean
and
P.
Tavan
,
J. Chem. Phys.
88
,
4884
(
1988
).
4.
M. F.
Großjean
,
P.
Tavan
, and
K.
Schulten
,
J. Phys. Chem.
94
,
8059
(
1990
).
5.
M. J. Frisch et al., GAUSSIAN 94, Revision B.3, Gaussian, Inc., Pittsburgh PA, 1995.
6.
J. J. P. Stewart, Quantum Chemistry Program Exchange Bulletin 6, 1986.
7.
K. B. Lipkowitz and D. B. Boyd, Reviews in Computational Chemistry, Vol. IV (VCH Publishers, Inc., New York, 1993).
8.
T. P.
Hamilton
and
P.
Pulay
,
J. Phys. Chem.
93
,
2341
(
1989
).
9.
S.
Hirata
,
H.
Yshida
,
H.
Torii
, and
M.
Tasumi
,
J. Chem. Phys.
103
,
8955
(
1995
).
10.
X.
Zhou
,
S. J.
Mole
, and
R.
Liu
,
Spectroscopy
12
,
73
(
1996
).
11.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev.
136
,
B864
(
1964
).
12.
W.
Kohn
and
L. J.
Sham
,
Phys. Rev.
140
,
A1133
(
1965
).
13.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
14.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
15.
M.
Nonella
and
P.
Tavan
,
Chem. Phys.
199
,
19
(
1995
).
16.
P. Tavan, in Spectroscopy of Biological Molecules, 6th European Conference on the Spectroscopy of Biological Molecules, 3–8 September, 1995, Villeneuve d’Ascq, France, edited by J. C. Merlin, S. Turrell, and J. P. Huvenne (Kluwer Academic, Dordrecht, 1995), pp. 3–6.
17.
R. G. Parr and W. Yang, Density-functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
18.
R.
Car
and
M.
Parrinello
,
Phys. Rev. Lett.
55
,
2471
(
1985
).
19.
C.
Lee
et al.,
Phys. Rev. B
47
,
4863
(
1993
).
20.
M.
Tuckerman
,
K.
Laasonen
,
M.
Sprik
, and
M.
Parrinello
,
J. Chem. Phys.
103
,
150
(
1995
).
21.
M.
Sprik
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
105
,
1142
(
1996
).
22.
J. Hutter et al., CPMD Version 3.0, MPI für Festkörperforschung and IBM Zurich Research Laboratory, 1995–96.
23.
A.
Rahman
,
Phys. Rev.
136
,
A405
(
1964
).
24.
L.
Verlet
,
Phys. Rev.
159
,
98
(
1967
).
25.
M. P. Allen and D. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987).
26.
M.
Karplus
and
A.
McCammon
,
Annu. Rev. Biochem.
53
,
263
(
1983
).
27.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Angew. Chem. Int. Ed. Engl.
29
,
992
(
1990
).
28.
H. J. C.
Berendsen
,
Science
271
,
954
(
1996
).
29.
K. M.
Merz
,
Curr. Opin. Struct. Biol.
7
,
511
(
1997
).
30.
B. R.
Brooks
et al.,
J. Comput. Chem.
4
,
187
(
1983
).
31.
S. J.
Weiner
et al.,
J. Am. Chem. Soc.
106
,
765
(
1984
).
32.
A. Brünger, X-PLOR Manual, The Howard Hughes Medical Institute and Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, 1992.
33.
W. van Gunsteren et al., Biomolecular Simulation: The GROMOS96 Manual and User Guide, Vdf Hochschulverlag AG an der ETH Zürich, Universitätstrasse 6, CH-8092 Zürich, 1996.
34.
J. K.
Gregory
et al.,
Science
275
,
814
(
1997
).
35.
S.
Kuwajima
and
A.
Warshel
,
J. Phys. Chem.
94
,
460
(
1990
).
36.
L. X.
Dang
and
T.-M.
Chang
,
J. Chem. Phys.
106
,
8149
(
1997
).
37.
C. L.
Brooks
III
,
B. M.
Pettitt
, and
M.
Karplus
,
J. Chem. Phys.
83
,
5897
(
1985
).
38.
R. J.
Loncharich
and
B. R.
Brooks
,
Proteins
6
,
32
(
1989
).
39.
S. E.
Feller
,
R. M.
Venable
, and
R. W.
Pastor
,
Langmuir
13
,
6555
(
1997
).
40.
D. J.
Tobias
,
K.
Tu
, and
M. L.
Klein
,
Curr. Opin. Colloid Interface Sci.
2
,
15
(
1997
).
41.
C.
Niedermeier
and
P.
Tavan
,
J. Chem. Phys.
101
,
734
(
1994
).
42.
C.
Niedermeier
and
P.
Tavan
,
Mol. Simul.
17
,
57
(
1996
).
43.
L.
Greengard
and
V.
Rokhlin
,
Chem. Scr.
29A
,
139
(
1989
).
44.
J. A.
Board
, Jr.
et al.,
Chem. Phys. Lett.
198
,
89
(
1992
).
45.
W. B.
Streett
,
D. J.
Tildesley
, and
G.
Saville
,
Mol. Phys.
35
,
639
(
1978
).
46.
H.
Grubmüller
,
H.
Hleer
,
A.
Windemuth
, and
K.
Schulten
,
Mol. Simul.
6
,
121
(
1991
).
47.
M. E.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
94
,
6811
(
1991
).
48.
R.
Zhou
and
B. J.
Berne
,
J. Phys. Chem.
103
,
9444
(
1995
).
49.
A. Windemuth, Parallel Computing in Computational Chemistry (ACS Books, Washington DC, 1995).
50.
M.
Eichinger
,
H.
Grubmüller
,
H.
Heller
, and
P.
Tavan
,
J. Comput. Chem.
18
,
1729
(
1997
).
51.
B. A.
Luty
,
M. E.
Davis
,
I. G.
Tironi
, and
W. F.
van Gunsteren
,
Mol. Simul.
14
,
11
(
1994
).
52.
U.
Essmann
et al.,
J. Chem. Phys.
103
,
8577
(
1995
).
53.
A. Y.
Toukmaji
and
J. J. A.
Board
,
Comput. Phys. Commun.
95
,
73
(
1996
).
54.
E. L.
Pollock
and
J.
Glosli
,
Comput. Phys. Commun.
95
,
93
(
1996
).
55.
P.
Procacci
,
T.
Darden
, and
M.
Marchi
,
J. Phys. Chem.
100
,
10464
(
1996
).
56.
H.
Grubmüller
,
B.
Heymann
, and
P.
Tavan
,
Science
271
,
997
(
1996
).
57.
E.-L.
Florin
,
V. T.
Moy
, and
H. E.
Gaub
,
Science
264
,
415
(
1994
).
58.
M. Eichinger, H. Grubmüller, and H. Heller, User Manual for EGO_VIII, Release 2.0, Theoretische Biophysik, Institut für Medizinische Optik, Ludwig-Maximilians-Universität, Oettingenstr. 67, D-80585 München, Germany, 1995, electronic access: http://www.imo.physik.uni-muenchen.de/ego.html.
59.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
60.
M. A.
Thompson
and
G. K.
Schenter
,
J. Phys. Chem.
99
,
6374
(
1995
).
61.
D.
Bakowies
and
W.
Thiel
,
J. Comput. Chem.
17
,
87
(
1996
).
62.
P. A.
Bash
,
M. J.
Field
, and
M.
Karplus
,
J. Am. Chem. Soc.
109
,
8092
(
1987
).
63.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
64.
J.
Gao
,
J. Phys. Chem.
96
,
437
(
1992
).
65.
M. A.
Thompson
,
J. Phys. Chem.
99
,
4794
(
1995
).
66.
D.
Bakowies
and
W.
Thiel
,
J. Phys. Chem.
100
,
10580
(
1996
).
67.
I. B.
Bersuker
,
M. K.
Leong
,
J. E.
Boggs
, and
R. S.
Pearlman
,
Int. J. Quantum Chem.
63
,
1052
(
1997
).
68.
P. L.
Cummins
and
J. E.
Gready
,
J. Comput. Chem.
18
,
1496
(
1997
).
69.
G.
Alagona
,
p.
Desmeules
,
C.
Ghia
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
106
,
3623
(
1984
).
70.
U. C.
Singh
and
P. A.
Kollman
,
J. Comput. Chem.
7
,
718
(
1986
).
71.
F. K.
Brown
et al.,
J. Org. Chem.
57
,
4862
(
1992
).
72.
M.
Freindorf
and
J.
Gao
,
J. Comput. Chem.
17
,
386
(
1996
).
73.
R. V.
Stanton
,
D. S.
Hartsough
, and
K. M.
Merz
,
J. Phys. Chem.
97
,
11868
(
1993
).
74.
T.
Matsubara
,
F.
Maseras
,
N.
Koga
, and
K.
Morokuma
,
J. Phys. Chem.
100
,
2573
(
1996
).
75.
M.
Svenssons
et al.,
J. Phys. Chem.
100
,
19357
(
1996
).
76.
I.
Tun̂ón
et al.,
J. Comput. Chem.
17
,
19
(
1996
).
77.
I.
Tun̂ón
,
M. T. C.
Martins-Costa
,
C.
Millot
, and
M. F.
Ruiz-López
,
J. Chem. Phys.
106
,
3633
(
1997
).
78.
M.
Strnad
et al.,
J. Chem. Phys.
106
,
3643
(
1997
).
79.
D. Bakowies, Ph.D. thesis, Universität Zürich, 1994.
80.
M. Eichinger, Ph.D. thesis, Ludwig-Maximilians Universität München, Germany, 1999 (in preparation).
81.
U. C.
Singh
and
P. A.
Kollman
,
J. Comput. Chem.
5
,
129
(
1984
).
82.
H.
Grubmüller
and
P.
Tavan
,
J. Comput. Chem.
19
,
1534
(
1998
).
83.
C. Alhambra, K. Byun, and J. Gao, in Combined QM and MM methods, edited by J. Gao and M. A. Thompson (ACS Books, Washington DC, 1998).
84.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
85.
W. L.
Jorgensen
et al.,
J. Chem. Phys.
79
,
926
(
1983
).
86.
C. L.
Brooks
III
and
M.
Karplus
,
J. Chem. Phys.
79
,
6312
(
1983
).
87.
W. F.
van Gunsteren
and
H. J. C.
Berendsen
,
Mol. Phys.
34
,
1311
(
1977
).
88.
H. J. C.
Berendsen
et al.,
J. Chem. Phys.
81
,
3684
(
1984
).
89.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
90.
S. A.
Clough
,
Y.
Beers
,
G. P.
Klein
, and
L. S.
Rothman
,
J. Chem. Phys.
59
,
2254
(
1973
).
91.
C. A.
Coulson
and
D.
Eisenberg
,
Proc. R. Soc. London, Ser. A
291
,
445
(
1966
).
92.
W. E.
Thiessen
and
A. H.
Narten
,
J. Chem. Phys.
77
,
2656
(
1982
).
93.
G. Herzberg, Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Co., Inc., Princeton, NJ, 1966).
94.
T. A.
Ford
and
M.
Falk
,
Can. J. Chem.
46
,
3579
(
1968
).
95.
S. H.
Chen
et al.,
Phys. Rev. Lett.
53
,
1360
(
1984
).
96.
H. Goldstein, Classical Mechanics (Addison–Wesley, Menlo Park, CA, 1970).
97.
T. R.
Dyke
,
K. M.
Mack
, and
J. S.
Muenter
,
J. Chem. Phys.
66
,
498
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.