The computation of electron affinities of atoms and molecules is one of the most demanding tasks in quantum chemistry. This is because the electronic structures of neutral systems compared to their respective anions are qualitatively different and thus errors in the computed correlation energies, in general, do not cancel. Correlation energies obtained from traditional configuration interaction (CI) expansions, however, are known to converge notoriously slowly due to the presence of interelectronic cusps in the exact wave function. We compute the electron affinities of the first-row atoms using the recently proposed (explicitly correlated) r12-[multireference configuration interaction (single double) MR-CI(SD)] and r12-MR-ACPF (averaged coupled-pair functional) methods which take care of the interelectronic cusps by means of terms being linear in the interelectronic distances (r12). The reference spaces and basis sets (which are further augmented with diffuse functions) are taken from our former study on neutral atoms and their respective positive ions [J. Chem. Phys. 109, 9795 (1998)]. The performance of MR-ACPF is validated by comparison with full CI. The computed electron affinities (corrected for relativistic effects and nuclear motion) deviate from experiment by: −0.4 (H), +0.3 (Li), +5 (B, within experimental uncertainty), −0.6 (C), −15 (O), and −16 meV (F). Without relying on fortuitous error compensations, the electron affinities of B, C, O, and F can presently not be obtained in such an accuracy with traditional CI methods without extrapolation to the basis set limit.

1.
B. H.
Botsch
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
76
,
6046
(
1982
).
2.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
3.
R. T.
Pack
and
W. B.
Brown
,
J. Chem. Phys.
45
,
556
(
1966
).
4.
M.
Hoffmann-Ostenhof
,
T.
Hoffmann-Ostenhof
, and
H.
Stremnitzer
,
Phys. Rev. Lett.
68
,
3857
(
1992
).
5.
V. A.
Fock
,
Izv. Akad. Nauk SSSR, Ser. Fiz.
18
,
161
(
1954
)
V. A.
Fock
, [
D. Kngl. Norske Videnskab. Selsk. Forh.
31
,
138
,
145
(
1958
)].
6.
C.
Schwartz
,
Phys. Rev.
126
,
1015
(
1962
).
7.
C.
Schwartz
,
Methods Comput. Phys.
2
,
241
(
1963
).
8.
W.
Lakin
,
J. Chem. Phys.
43
,
2954
(
1965
).
9.
R. N.
Hill
,
J. Chem. Phys.
83
,
1173
(
1985
).
10.
W.
Kutzelnigg
and
J. D.
Morgan
III
,
J. Chem. Phys.
96
,
4484
(
1992
).
11.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
12.
E. A.
Hylleraas
,
Z. Phys.
54
,
347
(
1929
).
13.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1987
).
14.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
15.
H.
Müller
,
W.
Kutzelnigg
,
J.
Noga
, and
W.
Klopper
,
J. Chem. Phys.
106
,
1863
(
1997
).
16.
H.
Müller
,
W.
Kutzelnigg
, and
J.
Noga
,
Mol. Phys.
92
,
535
(
1997
).
17.
J. Noga, W. Klopper, and W. Kutzelnigg, in Recent Advances in Coupled-Cluster Methods, edited by R. J. Bartlett (World Scientific, Singapore, 1997), p. 1.
18.
R. J.
Gdanitz
,
Chem. Phys. Lett.
210
,
253
(
1993
).
19.
R. J.
Gdanitz
and
R.
Röhse
,
Int. J. Quantum Chem.
55
,
147
(
1995
);
R. J.
Gdanitz
and
R.
Röhse
,
Int. J. Quantum Chem.
59
,
E505
(
1996
).
20.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
).
21.
R. J.
Gdanitz
,
Chem. Phys. Lett.
283
,
253
(
1998
);
R. J.
Gdanitz
,
Chem. Phys. Lett.
288
,
E590
(
1998
);
R. J.
Gdanitz
,
Chem. Phys. Lett.
295
,
E540
(
1998
).
22.
R. J.
Gdanitz
,
J. Chem. Phys.
109
,
9795
(
1998
).
23.
H.
Hotop
and
W. C.
Lineberger
,
J. Phys. Chem. Ref. Data
14
,
731
(
1985
).
24.
R. A.
Kendall
,
T.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
25.
J.
Gauss
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
26.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
27.
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf et al.
28.
R. J. Gdanitz. AMICA suite of programs (unpublished, 1997).
29.
H.
Lischka
,
R.
Shepard
,
F. B.
Brown
, and
I.
Shavitt
,
Int. J. Quant. Chem., Quantum Chem. Symp.
S15
,
91
(
1981
).
30.
R.
Ahlrichs
,
H.-J.
Böhm
,
C.
Ehrhardt
,
P.
Scharf
,
H.
Schiffer
,
H.
Lischka
, and
M.
Schindler
,
J. Comput. Chem.
6
,
200
(
1985
).
31.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
D. C.
Comeau
,
M.
Pepper
,
H.
Lischka
,
P. G.
Szalay
,
R.
Ahlrichs
,
F. B.
Brown
, and
J.-G.
Zhao
,
Int. J. Quant. Chem., Quantum Chem. Symp.
22
,
149
(
1988
).
32.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
33.
C. L.
Pekeris
,
Phys. Rev.
112
,
1649
(
1958
).
34.
K. R.
Lykke
,
K. K.
Murray
, and
W. C.
Lineberger
,
Phys. Rev. A
43
,
6104
(
1991
).
35.
D. B.
Kinghorn
and
L.
Adamowicz
,
J. Chem. Phys.
106
,
4589
(
1997
).
36.
G. W. F.
Drake
,
Nucl. Instrum. Methods Phys. Res. B
31
,
7
(
1988
).
37.
G.
Haeffler
,
D.
Hanstorp
,
I.
Kiyan
,
A. E.
Klinkmüller
,
U.
Ljungblad
, and
D. J.
Pegge
,
Phys. Rev. A
53
,
4127
(
1996
).
38.
C. S.
Feigerle
,
R. R.
Corderman
, and
W. C.
Lineberger
,
J. Chem. Phys.
74
,
1513
(
1981
).
39.
D.
Feldman
,
Chem. Phys. Lett.
47
,
338
(
1977
).
40.
J. M.
García de la Vega
,
Phys. Rev. A
51
,
2616
(
1995
).
41.
D. M.
Neumark
,
K. R.
Lykke
,
T.
Anderson
, and
W. C.
Lineberger
,
Phys. Rev. A
32
,
1890
(
1985
).
42.
C.
Blondel
,
P.
Cacciani
,
C.
Delsart
, and
R.
Trainham
,
Phys. Rev. A
40
,
3698
(
1989
).
43.
J.
Komasa
,
W.
Cencek
, and
J.
Rychlewski
,
Phys. Rev. A
52
,
4500
(
1995
).
44.
G.
Büsse
,
H.
Kleindienst
, and
A.
Lüchow
,
Int. J. Quantum Chem.
60
,
241
(
1998
).
45.
T.
Noro
,
M.
Yoshimine
,
M.
Sekiya
, and
F.
Sasaki
,
Phys. Rev. Lett.
66
,
1157
(
1991
).
46.
P. G.
Szalay
and
R. J.
Bartlett
,
Chem. Phys. Lett.
214
,
481
(
1993
).
47.
L.
Füsti-Molnár
and
P. G.
Szalay
,
J. Phys. Chem.
100
,
6288
(
1996
).
48.
M.
Urban
,
J. D.
Watts
, and
R. J.
Bartlett
,
Int. J. Quantum Chem.
52
,
211
(
1994
).
49.
S. R.
Hughes
and
U.
Kaldor
,
J. Chem. Phys.
99
,
6773
(
1993
).
50.
R. J.
Harrison
,
J. Chem. Phys.
94
,
5021
(
1991
).
51.
E.
Eliav
,
Y.
Ishikawa
,
P.
Pyykkö
, and
U.
Kaldor
,
Phys. Rev. A
56
,
4532
(
1997
).
52.
C.
Froese Fischer
,
A.
Ynnerman
, and
G.
Gaigalas
,
Phys. Rev. A
51
,
4611
(
1995
).
53.
C.
Froese Fischer
,
J. Phys. B
26
,
855
(
1993
).
54.
K. T.
Chung
and
P.
Fullbright
,
Phys. Scr.
45
,
445
(
1992
).
55.
D. L.
Strout
and
G. E.
Scuseria
,
J. Chem. Phys.
96
,
9025
(
1992
).
56.
G. E.
Scuseria
,
J. Chem. Phys.
95
,
7426
(
1991
).
57.
D.
Sundholm
and
J.
Olsen
,
Chem. Phys. Lett.
171
,
53
(
1990
).
58.
R. L.
Graham
,
D. L.
Yeager
, and
A.
Rizzo
,
J. Chem. Phys.
91
,
5451
(
1989
);
R. L.
Graham
,
D. L.
Yeager
, and
A.
Rizzo
,
J. Chem. Phys.
92
,
6336
(E) (
1990
).
59.
L.
Adamowicz
and
R. J.
Bartlett
,
J. Chem. Phys.
84
,
6837
(
1986
).
60.
R. N.
Barnett
,
P. J.
Reynolds
, and
W. A.
Lester
,
J. Chem. Phys.
84
,
4992
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.