Recently there has been considerable interest, not to mention controversy, concerning a key aspect of the molecular Aharonov–Bohm (MAB) effect: the construction of the phase angle, induced by geometric phase effect, whose gradient is the vector potential characteristic of MAB theory. In the past this angle was constructed from explicit knowledge of the locus of the seam of conical intersection. Here it is shown how a phase angle that satisfies the requirements of MAB theory can be determined without a priori knowledge of the locus of points of conical intersection. This approach has important implications for direct dynamics. It is a corollary of a recent analysis that showed that diagonalizing the matrix of virtually any symmetric (real-valued Hermitian) electronic property operator in the subspace of states that intersect conically generates a transformation that removes all of the singularity of the derivative coupling at a conical intersection. Key aspects of this method are illustrated by considering the dipole moment operator near a point on the 1 3A–2 3A seam of conical intersection in CH2.

1.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
70
,
2284
(
1979
).
2.
A.
Kuppermann
and
Y.-S. M.
Wu
,
Chem. Phys. Lett.
205
,
577
(
1993
).
3.
H. C.
Longuet-Higgins
,
Adv. Spectrosc.
2
,
429
(
1961
).
4.
C. A.
Mead
,
Rev. Mod. Phys.
64
,
51
(
1992
).
5.
C. A.
Mead
,
Chem. Phys.
49
,
23
(
1980
).
6.
C. A.
Mead
,
Chem. Phys.
49
,
33
(
1980
).
7.
Y.
Aharonov
and
B.
Bohm
,
Phys. Rev.
115
,
485
(
1959
).
8.
A. Kuppermann, The Geometric Phase in Reaction Dynamics, in Dynamics of Molecules and Chemical Reactions, edited by R. E. Wyatt and J. Z. H. Zhang (Marcel Dekker, Inc., New York, 1996), pp. 411–472.
9.
B.
Kendrick
and
R. T
Pack
,
J. Chem. Phys.
104
,
7502
(
1996
).
10.
B.
Kendrick
and
R. T
Pack
,
J. Chem. Phys.
104
,
7475
(
1996
).
11.
B.
Kendrick
,
Phys. Rev. Lett.
79
,
2431
(
1997
).
12.
M. S.
Gordon
,
G.
Chaban
, and
T.
Taketsugu
,
J. Phys. Chem.
100
,
11512
(
1996
).
13.
B.
Kendrick
and
C. A.
Mead
,
J. Chem. Phys.
102
,
4160
(
1995
).
14.
M.
Baer
,
J. Chem. Phys.
107
,
2694
(
1997
).
15.
D. R.
Yarkony
,
J. Chem. Phys.
105
,
10456
(
1996
).
16.
D. R.
Yarkony
,
J. Chem. Phys.
109
,
7047
(
1998
).
17.
D. R.
Yarkony
,
J. Phys. Chem. A
101
,
4263
(
1997
).
18.
C. A.
Mead
and
D. G.
Truhlar
,
J. Chem. Phys.
77
,
6090
(
1982
).
19.
N.
Matsunaga
and
D. R.
Yarkony
,
Mol. Phys.
93
,
79
(
1998
).
20.
R. G.
Sadygov
and
D. R.
Yarkony
,
J. Chem. Phys.
109
,
20
(
1998
).
21.
H. J.
Werner
and
W.
Meyer
,
J. Chem. Phys.
74
,
5802
(
1981
).
22.
D. R.
Yarkony
,
J. Phys. Chem. A
102
,
8073
(
1998
).
23.
D. R.
Yarkony
,
J. Phys. Chem.
100
,
18612
(
1996
).
24.
I. Shavitt, The Method of Configuration Interaction, in Modern Theoretical Chemistry, Vol. 3, edited by H. F. Schaefer (Plenum, New York, 1976), p. 189.
25.
B. H. Lengsfield and D. R. Yarkony, Nonadiabatic Interactions Between Potential Energy Surfaces: Theory and Applications, in State-Selected and State to State Ion-Molecule Reaction Dynamics: Part 2 Theory, Vol. 82, edited by M. Baer and C.-Y. Ng (Wiley, New York, 1992), pp. 1–71.
26.
N. C.
Handy
and
H. F.
Schaefer
,
J. Chem. Phys.
81
,
5031
(
1984
).
27.
D. R.
Yarkony
,
Acc. Chem. Res.
31
,
511
(
1998
).
28.
N.
Matsunaga
and
D. R.
Yarkony
,
J. Chem. Phys.
107
,
7825
(
1997
).
29.
D. R.
Yarkony
,
J. Chem. Phys.
104
,
2932
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.