Constant pressure Monte Carlo simulations of a coarse-grained off-lattice model for monolayers of amphiphilic molecules at the air–water interface are presented. Our study focuses on phase transitions within a monolayer rather than on self-aggregation. We thus model the molecules as stiff chains of Lennard-Jones spheres with one slightly larger repulsive end bead (head) grafted to a planar surface. Depending on the size of the head, the temperature and the pressure, we find a variety of phases, which differ in tilt order (including tilt direction), and in positional order. In particular, we observe a modulated phase with a striped superstructure. The modulation results from the competition between two length scales, the head size, and the tail diameter. As this mechanism is fairly general, it may conceivably also be relevant in experimental monolayers. We argue that the superstructure would be very difficult to detect in a scattering experiment, which perhaps accounts for the fact that it has not been reported so far. Finally the effect of varying the chain length on the phase diagram is discussed. Except at high pressures and temperatures, the phase boundaries in systems with longer chains are shifted to higher temperatures.

1.
W. A. Barlow, Langmuir-Blodgett Films (Elsevier, 1980);
M. C. Petty, Langmuir–Blodgett Films (Cambridge University Press, New York, 1996).
2.
V. M. Kaganer, H. Möhwald, and P. Dutta, Rev. Mod. Phys. (in press).
3.
G. M.
Bell
,
L. L.
Combs
, and
L. J.
Dunne
,
Chem. Rev.
81
,
15
(
1981
);
H.
Möhwald
,
Annu. Rev. Phys. Chem.
41
,
441
(
1990
);
H. M.
McConnell
,
Annu. Rev. Phys. Chem.
42
,
171
(
1991
);
C. M.
Knobler
, and
R. C.
Desai
,
Annu. Rev. Phys. Chem.
43
,
207
(
1992
).
D. Andelman, F. Brochard, C. M. Knobler, and F. Rondelez, in Micelles, Membranes, Microemulsions and Monolayers, edited by W. M. Gelbart, D. Roux, and A. Ben-Shaul (Springer, New York, 1994).
4.
B. I.
Halperin
and
D. R.
Nelson
,
Phys. Rev. Lett.
41
,
121
(
1978
).
5.
M. C.
Shih
,
T. M.
Bohanon
,
J. M.
Mikrut
,
P.
Zschack
, and
P.
Dutta
,
J. Chem. Phys.
96
,
1556
(
1992
).
6.
M. C.
Shih
,
T. M.
Bohanon
,
J. M.
Mikrut
,
P.
Zschack
, and
P.
Dutta
,
Phys. Rev. A
45
,
5734
(
1992
);
M. C.
Shih
,
T. M.
Bohanon
,
J. M.
Mikrut
,
P.
Zschack
, and
P.
Dutta
,
J. Chem. Phys.
97
,
4485
(
1992
).
7.
B.
Fischer
,
E.
Teer
, and
C. M.
Knobler
,
J. Chem. Phys.
103
,
2365
(
1995
);
E.
Teer
,
C. M.
Knobler
,
C.
Lautz
,
S.
Wurlitzer
,
J.
Kildae
, and
T. M.
Fischer
,
J. Chem. Phys.
106
,
1913
(
1997
).
8.
B.
Smit
,
A. G.
Schlijper
,
L. A. M.
Rupert
, and
N. M.
van Os
,
J. Phys. Chem.
94
,
6933
(
1990
);
B.
Smit
,
P. A. J.
Hilbers
,
K.
Esselink
,
L. A. M.
Rupert
,
N. M.
van Os
, and
A. G.
Schlijper
,
Nature (London)
348
,
624
(
1990
);
B.
Smit
,
P. A. J.
Hilbers
,
K.
Esselink
,
L. A. M.
Rupert
,
N. M.
van Os
, and
A. G.
Schlijper
,
J. Phys. Chem.
95
,
6361
(
1991
);
S.
Karaborni
,
M. M.
van Os
, and
P. A. J.
Hilbers
,
Langmuir
9
,
1175
(
1993
).
9.
B.
Smit
,
P. A. J.
Hilbers
, and
K.
Esselink
,
Int. J. Mod. Phys. C
4
,
393
(
1993
);
B.
Smit
,
K.
Esselink
,
P. A. J.
Hilbers
,
N. M.
van Os
,
L. A. M.
Rupert
, and
I.
Szleifer
,
Langmuir
9
,
9
(
1993
);
K.
Esselink
,
P. A. J.
Hilbers
,
N. M.
van Os
,
B.
Smit
, and
S.
Karaborni
,
Colloids Surf., A
91
,
155
(
1994
);
S.
Karaborni
,
K.
Esselink
,
P. A. J.
Hilbers
,
B.
Smit
,
J.
Karthäuser
,
N. M.
van Os
, and
R.
Zana
,
Science
266
,
254
(
1994
).
10.
B. J.
Palmer
and
J.
Liu
,
Langmuir
12
,
746
(
1996
);
B. J.
Palmer
and
J.
Liu
,
Langmuir
12
,
6015
(
1996
).
11.
F. K.
von Gottberg
,
K. A.
Smith
, and
T. A.
Hatton
,
J. Chem. Phys.
106
,
9850
(
1997
);
F. K.
von Gottberg
,
K. A.
Smith
, and
T. A.
Hatton
,
J. Chem. Phys.
108
,
2232
(
1998
).
12.
D.
Viduna
,
A.
Milchev
, and
K.
Binder
,
Macromol. Theory Simul.
7
,
649
(
1998
).
13.
R.
Götz
and
R.
Lipowski
,
J. Chem. Phys.
108
,
7397
(
1998
).
14.
D.
Harries
and
A.
Ben-Shaul
,
J. Chem. Phys.
106
,
1609
(
1997
).
15.
R.
Hilfer
,
F. M.
Haas
, and
K.
Binder
,
Nuovo Cimento A
16
,
1297
(
1994
);
F. M.
Haas
,
R.
Hilfer
, and
K.
Binder
,
J. Chem. Phys.
102
,
2960
(
1995
);
F. M.
Haas
,
R.
Hilfer
, and
K.
Binder
,
J. Phys. Chem.
100
,
15290
(
1996
).
16.
F. M.
Haas
and
R.
Hilfer
,
J. Chem. Phys.
105
,
3859
(
1996
).
17.
F. Schmid, C. Stadler, and H. Lange, Computer Simulations in Condensed Matter Vol. 10, edited by D. P. Landau, K. K. Mon, and B. Schüttler (Springer, New York, 1997), p. 37;
Colloids Surf., A
149
,
301
(
1999
).
18.
C. Stadler, Dissertation Universität Mainz (1998).
19.
C. Stadler, H. Lange, and F. Schmid, Phys. Rev. E (in press).
20.
S. Opps, B. Yang, C. Gray, and D. Sullivan (to be published);
S. Opps (private communication).
21.
F.
Schmid
and
H.
Lange
,
J. Chem. Phys.
106
,
3757
(
1997
).
22.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).
23.
N. W. Ashcroft and N. D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976).
24.
Strickly speaking, one has no “Bragg” rods in a strictly two-dimensional system like ours, since there is no true long-range positional order. However, for all practical purposes, the peaks are indistinguishible from delta-singularities.
25.
C. A.
Helm
,
H.
Möhwald
,
K.
Kjaer
, and
J.
Als-Nielsen
,
Biophys. J.
52
,
381
(
1987
);
K.
Kjaer
,
J.
Als-Nielsen
,
C. A.
Helm
,
L. A.
Laxhuber
, and
H.
Möhwald
,
Phys. Rev. Lett.
58
,
2224
(
1987
).
26.
D.
Chowdhury
,
P. K.
Maiti
,
S.
Sabhapandit
, and
P.
Taneja
,
Phys. Rev. E
56
,
667
(
1997
).
27.
Y. K.
Levine
,
A.
Kolinski
, and
J.
Skolnick
,
J. Chem. Phys.
98
,
7581
(
1993
).
28.
A.
Baumgärtner
,
J. Chem. Phys.
103
,
10669
(
1995
);
A.
Baumgärtner
,
Biophys. J.
71
,
1248
(
1996
).
29.
T.
Sintes
and
A.
Baumgärtner
,
Biophys. J.
73
,
2251
(
1997
);
T.
Sintes
and
A.
Baumgärtner
,
Physica A
249
,
571
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.