Optical response due to the photo excited carrier or exciton dynamics in a one-dimensional (1D) dimethylglyoxime Pt complex [Pt(dmg)2] has been investigated by femtosecond pump–probe spectroscopy. Measurements were made at several excitation energies between the exciton state and the free electron hole pair state. Induced absorption was observed in the low-energy side of the exciton band at any excitation energy. The spectral shape of the induced absorption changed with time between 0.1 and 0.3 ps after instantaneous rise up. These results can be explained by the formation and thermalization processes of the relaxed excited state on the adiabatic potential surface. The unthermalized relaxed excited state is formed in a very short time (<50 fs). From the Raman spectrum, the frequency of the intermolecular stretching mode along the chain was estimated to be 80 cm−1(T∼400 fs). These facts suggest that, in contrast to other 1D systems such as polydiacetylenes (PDA) and halogen bridged mixed valence metal complexes (MX), the formation of the relaxed excited state is caused not by the stretching vibration along the 1D chain. We propose the possibility that the triggering of the primary relaxation is caused by a high frequency (>600 cm−1) intramolecular mode which is not in the direction of the 1D chain.

1.
(a)
M.
Yoshizawa
,
A.
Yasuda
, and
T.
Kobayashi
,
Appl. Phys. B: Photophys. Laser Chem.
53
,
296
(
1991
);
(b)
M.
Yoshizawa
,
A.
Yasuda
, and
T.
Kobayashi
,
Phys. Rev. B
47
,
3882
(
1993
);
(c)
M.
Yoshizawa
,
A.
Yasuda
, and
T.
Kobayashi
,
Phys. Rev. B
49
,
13259
(
1994
).
2.
M.
Yoshizawa
,
K.
Nishiyama
,
M.
Fujihira
, and
K.
Kobayashi
,
Chem. Phys. Lett.
207
,
461
(
1993
).
3.
H.
Fidder
,
J.
Knoester
, and
D. A.
Wiersma
,
J. Chem. Phys.
98
,
6564
(
1993
).
4.
A. E.
Johoson
,
S.
Kumazaki
,
K.
Yoshihara
,
Chem. Phys. Lett.
211
,
511
(
1993
).
5.
K.
Minoshima
,
M.
Taiji
,
K.
Misawa
, and
T.
Kobayashi
,
Chem. Phys. Lett.
218
,
67
(
1994
).
6.
S.
Kobayashi
and
F.
Sasaki
,
J. Lumin.
58
,
113
(
1994
).
7.
H.
Ooi
,
M.
Yamashita
, and
T.
Kobayashi
,
Solid State Commun.
80
,
789
(
1993
).
8.
S.
Tomimoto
,
H.
Nansei
,
S.
Saito
,
T.
Suemoto
,
J.
Takeda
, and
S.
Kurita
,
Phys. Rev. Lett.
81
,
417
(
1998
).
9.
A.
Sugita
,
T.
Kobayashi
, and
M.
Yamashita
,
Springer ser. Chem. Phys.
Vol.
63
: Ultrafast Phenomina XI (Springer,
1999
), pp.
342
.
10.
M. Ueta, H. Kanzaki, K. Kobayashi, Y. Toyazawa, and E. Hanamura, Excited processes in Solids, Springer Ser. Solid-State Sci., Vol. 60 (Springer, Berlin, Heidelberg, 1986).
11.
K. S. Song and R. T. Williams, Self-trapped Excitons. Springer Ser. Solid-State Sci., Vol. 105 (Springer, Berlin, Heidelberg, 1993).
12.
Y.
Toyozawa
and
Y.
Shinozuka
,
J. Phys. Soc. Jpn.
48
,
472
(
1980
).
13.
T.
Kamata
,
T.
Fukaya
,
M.
Mizuno
,
H.
Matuda
, and
F.
Mizukami
,
Chem. Phys. Lett.
221
,
194
(
1994
).
14.
T.
Kamata
,
T.
Fukaya
,
H.
Matsuda
,
F.
Mizukami
, and
M.
Tachiya
,
J. Phys. Chem.
99
,
13239
(
1995
).
15.
T.
Kamata
,
T.
Fukaya
,
H.
Matuda
, and
F.
Mizukami
,
Appl. Phys. Lett.
651
,
343
(
1994
).
16.
T. W.
Thomas
and
A. E.
Underhill
,
Chem. Soc. Rev.
1
,
99
(
1972
).
17.
Y.
Ohashi
,
I.
Hanazaki
and
S.
Nagakura
,
Inorg. Chem.
9
,
2551
(
1970
).
18.
B. G.
Anex
and
F. K.
Krist
,
J. Am. Chem. Soc.
22
,
6114
(
1967
).
19.
K.
Yamamoto
,
T.
Kamata
,
Y.
Yoshida
,
K.
Yase
,
F.
Mizukami
, and
T.
Ohta
,
Adv. Mater.
10
,
1018
(
1998
).
20.
K.
Yamamoto
,
T.
Kamata
,
Y.
Yoshida
,
K.
Yase
,
T.
Fukaya
,
F.
Mizukami
, and
T.
Ohta
,
Chem. Mater.
10
,
1343
(
1998
).
21.
K.
Yamamoto
,
T.
Kamata
,
S.
Iwai
,
S.
Kazaoui
,
N.
Minami
,
F.
Mizukami
,
K.
Misawa
,
T.
Ohta
,
T.
Kobayashi
,
Chem. Phys. Lett.
302
,
609
(
1999
).
22.
(a)
Y.
Wada
,
T.
Mitani
,
M.
Yamashita
, and
T.
Koda
,
J. Phys. Soc. Jpn.
54
,
3143
(
1985
);
(b)
M.
Tanaka
et al.,
Chem. Phys.
96
,
343
(
1985
).
(c)
H.
Tanino
and
K.
Kobayashi
,
J. Phys. Soc. Jpn.
52
,
1446
(
1983
).
23.
S.
Iwai
,
S.
Murata
,
T.
Kamata
,
T.
Fukaya
,
K.
Yamamoto
, and
T.
Ohta
,
Mol. Cryst. Liq. Cryst.
294
,
141
(
1997
).
24.
In the Raman spectrum, strong peaks were found at 80, 857, 1140, 1336, 1471, and 1560 cm−1. Weaker peaks at 240, 318, and 351 cm−1 were also observed.
25.
The temperature differential spectrum has a large negative signal around the lowest energy peak of the ground-state absorption at 1.48 eV where the bleaching by the electronic excitation is observed at short times. This means that the time evolution around 1.48 eV after 20 ps does not reflect exactly the recovery of the electronic ground-state population. On the other hand, fortunately, the absorption increase around 1.3 eV is not affected by the rise of the lattice temperature since the intensity of the temperature differential spectrum is low in this energy region. The absorption change due to this “thermal effect” could not be found at negative time delay. This means the rise of the lattice temperature relaxes completely before the next excitation pulse, and accumulation does not occur at a repetition rate of 1 kHz.
26.
S. Mukamel, Principle of Nonlinear Optical Spectroscopy (Oxford, New York 1995).
27.
K. P. Huber and G. Herzberg, Molecular spectra and Molecular structure IV (VNR, New York, 1979).
28.
S.
Iwai
,
T.
Kamata
,
T.
Fukaya
,
S.
Murata
,
K.
Yamamoto
, and
T.
Ohota
,
Springer ser. Chem. Phys.
Vol.
63
: Ultrafast Phenomina XI (Springer,
1999
), pp.
502
.
This content is only available via PDF.
You do not currently have access to this content.