Based on a recent result showing that the net Coulomb potential in condensed ionic systems is rather short ranged, an exact and physically transparent method permitting the evaluation of the Coulomb potential by direct summation over the r−1 Coulomb pair potential is presented. The key observation is that the problems encountered in determining the Coulomb energy by pairwise, spherically truncated r−1 summation are a direct consequence of the fact that the system summed over is practically never neutral. A simple method is developed that achieves charge neutralization wherever the r−1 pair potential is truncated. This enables the extraction of the Coulomb energy, forces, and stresses from a spherically truncated, usually charged environment in a manner that is independent of the grouping of the pair terms. The close connection of our approach with the Ewald method is demonstrated and exploited, providing an efficient method for the simulation of even highly disordered ionic systems by direct, pairwise r−1 summation with spherical truncation at rather short range, i.e., a method which fully exploits the short-ranged nature of the interactions in ionic systems. The method is validated by simulations of crystals, liquids, and interfacial systems, such as free surfaces and grain boundaries.

1.
E.
Madelung
,
Phys. Z.
19
,
524
(
1918
).
2.
P. P.
Ewald
,
Ann. Phys. (Leipzig)
64
,
253
(
1921
).
3.
J. P.
Hansen
and
I. R.
McDonald
,
Phys. Rev. A
11
,
2111
(
1975
).
4.
H. M.
Evjen
,
Phys. Rev.
39
,
675
(
1932
);
see also, C. Kittel, Introduction to Solid State Physics, 3rd ed. (Wiley, New York, 1967), pp. 94–96.
5.
J. H. R.
Clarke
,
W.
Smith
, and
L. V.
Woodcock
,
J. Chem. Phys.
84
,
2230
(
1984
).
6.
L. V.
Woodcock
,
Advances in Molten Salt Chemistry
, edited by
J.
Braunstein
,
,
G.
Mamantov
, and
,
G. P.
Smith
(
Plenum
,
New York
,
1975
), Vol.
3
, p.
1
.
7.
D.
Fincham
,
Mol. Simul.
13
,
1
(
1994
).
8.
L.
Greengard
and
V.
Rokhlin
,
J. Comput. Phys.
73
,
325
(
1987
).
9.
L.
Greengard
,
Science
265
,
909
(
1994
).
10.
H. Y.
Wang
and
R.
LeSar
,
J. Chem. Phys.
104
,
4173
(
1996
).
11.
D.
Wolf
,
Phys. Rev. Lett.
68
,
3315
(
1992
).
12.
D.
Wolf
,
Springer Proc. Phys.
80
,
57
(
1995
).
13.
F.
Rohr
,
K.
Wirth
,
J.
Libuda
,
D.
Cappus
,
M.
Baumer
, and
H.-J.
Freund
,
Surf. Sci.
315
,
L977
(
1994
).
14.
D. J.
Adams
,
Chem. Phys. Lett.
62
,
329
(
1979
);
D. J.
Adams
,
J. Chem. Phys.
78
,
2585
(
1983
).
15.
S. W.
de Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
16.
Although the terms “Madelung energy” and “Madelung potential” are usually associated with crystalline structures at zero temperature, here we use the terms more broadly in the sense of the Rc-dependent “true” Coulomb energy or potential of a given system (crystal, liquid, plasma, etc.).
17.
See, for example, J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, New York, 1975).
18.
R.
Lacman
,
Colloq. Int. Centre Natl. Rech. Sci. (Paris)
152
,
195
(
1965
).
19.
J. Eggebrecht and D. Wolf (unpublished work).
20.
F. H.
Stillinger
and
R.
Lovett
,
J. Chem. Phys.
49
,
1991
(
1968
).
21.
M. J. L.
Sangster
and
A. M.
Stoneham
,
Philos. Mag. B
52
,
717
(
1985
).
22.
D.
Wolf
,
J. Am. Ceram. Soc.
67
,
1
(
1984
).
23.
P. W.
Tasker
and
D. M.
Duffy
,
Surf. Sci.
137
,
91
(
1984
).
24.
D. M.
Duffy
and
P. W.
Tasker
,
Philos. Mag. A
47
,
817
(
1983
).
25.
D. E.
Parry
,
Surf. Sci.
49
,
433
(
1975
);
D. E.
Parry
,
Surf. Sci.
54
,
195
(
1975
).
26.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
27.
H. L.
Friedman
,
Mol. Phys.
29
,
1533
(
1975
).
28.
See, for example, B. E. Warren, X-ray Diffraction (Dover, New York, 1990).
29.
O.
Emersleben
,
Math. Nachr.
4
,
468
(
1951
).
30.
D.
Borwein
,
J. M.
Borwein
, and
K. F.
Taylor
,
J. Math. Phys.
26
,
2999
(
1985
).
31.
See, for example, N. H. March and M. P. Tosi, Coulomb Liquids (Academic, New York, 1984), p. 15.
32.
D. M.
Heyes
,
J. Chem. Phys.
74
,
1924
(
1981
).
33.
S. R.
Phillpot
,
S.
Yip
, and
D.
Wolf
,
Comput. Phys.
3
,
20
(
1989
);
S. R.
Phillpot
,
S.
Yip
, and
D.
Wolf
,
Phys. Rev. B
40
,
2831
(
1988
);
S. R.
Phillpot
,
S.
Yip
, and
D.
Wolf
,
Phys. Rev. B
40
,
2841
(
1988
).
34.
P.
Linse
and
H. C.
Andersen
,
J. Chem. Phys.
85
,
3027
(
1986
).
35.
See, for example,
D. M.
Heyes
and
J. H. R.
Clarke
,
J. Chem. Soc., Faraday Trans. 2
77
,
1089
(
1981
);
J. N.
Gossli
and
M. R.
Philpott
,
Electrochim. Acta
41
,
2145
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.