Based on a recent result showing that the net Coulomb potential in condensed ionic systems is rather short ranged, an exact and physically transparent method permitting the evaluation of the Coulomb potential by direct summation over the Coulomb pair potential is presented. The key observation is that the problems encountered in determining the Coulomb energy by pairwise, spherically truncated summation are a direct consequence of the fact that the system summed over is practically never neutral. A simple method is developed that achieves charge neutralization wherever the pair potential is truncated. This enables the extraction of the Coulomb energy, forces, and stresses from a spherically truncated, usually charged environment in a manner that is independent of the grouping of the pair terms. The close connection of our approach with the Ewald method is demonstrated and exploited, providing an efficient method for the simulation of even highly disordered ionic systems by direct, pairwise summation with spherical truncation at rather short range, i.e., a method which fully exploits the short-ranged nature of the interactions in ionic systems. The method is validated by simulations of crystals, liquids, and interfacial systems, such as free surfaces and grain boundaries.
Skip Nav Destination
Article navigation
1 May 1999
Research Article|
May 01 1999
Exact method for the simulation of Coulombic systems by spherically truncated, pairwise summation
D. Wolf;
D. Wolf
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Search for other works by this author on:
P. Keblinski;
P. Keblinski
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Search for other works by this author on:
S. R. Phillpot;
S. R. Phillpot
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Search for other works by this author on:
J. Eggebrecht
J. Eggebrecht
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Search for other works by this author on:
J. Chem. Phys. 110, 8254–8282 (1999)
Article history
Received:
July 09 1998
Accepted:
February 05 1999
Citation
D. Wolf, P. Keblinski, S. R. Phillpot, J. Eggebrecht; Exact method for the simulation of Coulombic systems by spherically truncated, pairwise summation. J. Chem. Phys. 1 May 1999; 110 (17): 8254–8282. https://doi.org/10.1063/1.478738
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00