We describe results of experiment and theory of the cuprous–cupric electron transfer rate in an aqueous solution at a copper electrode. The methods are similar to those we reported earlier for the ferrous–ferric rate. The comparison strongly suggests that, in marked distinction to the ferrous–ferric case, the electron transfer reaction is adiabatic. The model shows that the activation barrier is dominated by the energy required for the ion to approach the electrode, rather than by the energy required for rearrangement of the solvation shell, also in sharp distinction to the case of the ferric–ferrous electron transfer at a gold electrode. Calculated activation barriers based on this image agree with the experimental results reported here.

1.
W. J.
Shack
,
T. F.
Kassner
,
P. S.
Maiya
,
J. Y.
Park
, and
W. E.
Ruther
,
Nucl. Eng. Des.
108
,
199
(
1988
).
2.
W. E.
Ruther
,
W. K.
Soppet
, and
T. F.
Kassner
,
Corrosion
44
,
791
(
1988
).
3.
F.
Williams
and
A.
Nozik
,
Nature (London)
311
,
21
(
1984
).
4.
Proceedings of the Symposium on Batteries and Fuel Cells for Stationary and Electric Vehicle Applications, edited by A. R. Landgrebe and Z. Takehara (Electrochemical Society, Pennington, NJ, 1993).
5.
R.
Marcus
,
J. Chem. Phys.
24
,
966
(
1956
).
6.
R.
Marcus
,
J. Chem. Phys.
26
,
867
(
1957
).
7.
R.
Marcus
,
Can. J. Chem.
37
,
155
(
1959
).
8.
R.
Marcus
,
Trans. Symp. Electrode Processes
, Phila., PA,
1959
,
239
(
1957
).
9.
R.
Marcus
,
Trans. NY Acad. Sci.
19
,
423
(
1957
).
10.
R. A.
Marcus
,
Discuss. Faraday Soc.
29
,
21
(
1960
).
11.
R.
Marcus
,
J. Phys. Chem.
67
,
853
(
1963
).
12.
R.
Marcus
,
J. Chem. Phys.
43
,
679
(
1965
).
13.
L. A.
Curtiss
,
J. W.
Halley
,
J.
Hautman
,
Z.
Nagy
,
Y.-J.
Rhee
, and
R. M.
Yonco
,
J. Electrochem. Soc.
138
,
2032
(
1991
).
14.
B.
Smith
and
J. W.
Halley
,
J. Chem. Phys.
101
,
10915
(
1994
).
15.
J.
Hautman
,
J. W.
Halley
, and
Y.-J.
Rhee
,
J. Chem. Phys.
91
,
467
(
1989
).
16.
D. A.
Rose
and
I.
Benjamin
,
Chem. Phys. Lett.
234
,
209
(
1995
).
17.
D. A.
Rose
and
I.
Benjamin
,
J. Chem. Phys.
100
,
3545
(
1994
).
18.
J. B.
Strauss
and
G. A.
Voth
,
J. Chem. Phys.
97
,
7388
(
1993
).
19.
U. Bertocci and D. R. Turner, in Encyclopedia of Electrochemistry of the Elements, edited by A. J. Bard (Marcel Dekker, New York, 1974), Vol. 2, p. 383.
20.
J. O’M.
Bockris
and
M.
Enyo
,
Trans. Faraday Soc.
58
,
1187
(
1962
).
21.
T.
Hayashi
,
S.
Higuchi
,
H.
Kinoshita
, and
T.
Ishida
,
J. Electrochem. Soc.
37
,
64
(
1969
).
22.
L. H.
Jenkins
,
J. Electrochem. Soc.
117
,
630
(
1970
).
23.
T. I.
Lezhava
and
K. G.
Meladze
,
Elektrokhimiya
14
,
1651
(
1978
).
24.
G.
Piccardi
and
R.
Guidelli
,
J. Electroanal. Chem.
90
,
173
(
1978
).
25.
J.
Malyszko
and
B.
Stepnik-Swiatek
,
Pol. J. Chem.
55
,
2535
(
1981
).
26.
B.
Stepnik-Swiatek
and
J.
Malyszko
,
J. Electroanal. Chem.
292
,
175
(
1990
).
27.
B. E. Conway, in Modern Aspects of Electrochemistry, edited by B. E. Conway, R. E. White, and J. O’M. Bockris (Plenum, New York, 1985), Vol. 16, p. 103.
28.
J. O’M.
Bockris
and
A.
Gochev
,
J. Phys. Chem.
90
,
5232
(
1986
).
29.
Z. Nagy and R. M. Yonco, in Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors, edited by G. J. Theus and J. R. Weeks (Metals Society, Warrendale, PA, 1988), p. 157.
30.
H. J.
De Brun
,
A. F.
Moodie
, and
C. E.
Warble
,
J. Mater. Sci.
7
,
909
(
1972
).
31.
F. P.
Bailey
and
K. J. T.
Black
,
J. Mater. Sci.
13
,
1045
(
1978
).
32.
W. E.
Borbidge
,
R. V.
Allen
, and
P. T.
Whelan
,
J. Phys. (Paris)
47
, Suppl. 2,
C1
(
1986
).
33.
Z.
Nagy
,
J. P.
Blaudeau
,
N. C.
Hung
,
L. A.
Curtiss
, and
D. J.
Zurawski
,
J. Electrochem. Soc.
142
,
L87
(
1995
).
34.
D. D. MacDonald, G. R. Shierman, and P. Butler, Part 1: Report No. AECL-4136, AECL (Whiteshell Nuclear Research Estab., Pinawa, Manitoba, 1972), p. 65.
35.
H. E. Barner and R. V. Scheuerman, Handbook of Thermochemical Data for Compounds and Aqueous Species (Wiley, New York, 1978), p. 44.
36.
E. H.
Oelkers
,
H. C.
Helgeson
,
E. L.
Shock
,
D. M.
Sverjensky
,
J. W.
Johnson
, and
V. A.
Pokrovskii
,
J. Phys. Chem. Ref. Data
24
,
1448
(
1995
).
37.
K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, 2nd ed., edited by K. S. Pitzer (CRC, Boca Raton, FL, 1991), Chap. 3, Eqs. 63 and 64
38.
R. C.
Phutela
,
K. S.
Pitzer
, and
P. P. S.
Saluja
,
J. Chem. Eng. Data
32
,
78
(
1987
).
39.
P. S. Z.
Rogers
and
K. S.
Pitzer
,
J. Phys. Chem. Ref. Data
11
,
15
(
1982
).
40.
H. F.
Holmes
,
R. H.
Busey
,
J. M.
Simonson
,
R. E.
Mesmer
,
D. G.
Archer
, and
R. H.
Wood
,
J. Chem. Thermodyn.
19
,
863
(
1987
).
41.
K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, 2nd ed., edited by K. S. Pitzer (CRC, Boca Raton, FL, 1991), Chap. 3, Tables 2 and 7.
42.
K. S. Pitzer, in Activity Coefficients in Electrolyte Solutions, 2nd ed., edited by K. S. Pitzer (CRC, Boca Raton, FL, 1991), Chap. 3, p. 92.
43.
J. H. Keenan, F. G. Keyes, P. G. Hill, and J. G. Moore, Steam Tables, Thermodynamic Properties of Water Including Vapor, Liquid, and Solid Phases (Wiley, New York, 1969).
44.
K. S.
Pitzer
and
D. J.
Bradley
,
J. Phys. Chem.
83
,
1599
(
1979
).
45.
L.
Gerth
and
F.
Lapicque
,
J. Electrochem. Soc.
143
,
3910
(
1996
).
46.
V. V.
Losev
,
L. E.
Sribnyi
, and
A. I.
Molodov
,
Elektrokhimiya
2
,
1431
(
1966
).
47.
S.
Fronaeus
and
C. L.
Johansson
,
J. Electroanal. Chem.
45
,
195
(
1973
).
48.
Z.
Nagy
,
N. C.
Hung
,
K. C.
Liddell
,
M.
Minkoff
, and
G. K.
Leaf
,
J. Electroanal. Chem.
421
,
33
(
1997
).
49.
K. J. Vetter, Electrochemical Kinetics (Academic, New York, 1967), p. 149, and references therein.
50.
J.
Jacq
,
B.
Cavalier
, and
O.
Bloch
,
Electrochim. Acta
13
,
1119
(
1968
).
51.
A. I.
Molodov
,
G. N.
Markosyan
, and
V. V.
Losev
,
Electrochim. Acta
17
,
701
(
1972
).
52.
C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976), p. 267.
53.
J. W. Cobble, R. C. Murray, P. J. Turner, and K. Chen, EPRL Report No. NP-2400, Palo Alto, CA (1982).
54.
Z.
Nagy
,
N. C.
Hung
, and
R. M.
Yonco
,
J. Electrochem. Soc.
136
,
895
(
1989
).
55.
K.
Toukan
and
A.
Rahman
,
Phys. Rev. B
31
,
2643
(
1985
).
56.
J. W. Halley, S. Walbran, and B. Smith, in Electron and Ion Transfer in Condensed Media, edited by A. A. Kornyshev, M. Tosi, and J. Ulstrup (World Scientific, Singapore, 1997), p. 212.
57.
D. L.
Price
and
J. W.
Halley
,
J. Chem. Phys.
102
,
6603
(
1995
).
58.
L. A.
Curtiss
,
J. W.
Halley
,
J.
Hautman
, and
A.
Rahman
,
J. Chem. Phys.
86
,
2319
(
1987
).
59.
L. A.
Curtiss
and
R.
Jurgens
,
J. Phys. Chem.
94
,
5510
(
1990
).
60.
Y. Marcus, Ion Solvation (Wiley, Chickester, UK, 1985), p. 107.
61.
Handbook of Chemistry and Physics, 78th ed., edited by D. R. Lide (Chemical Rubber, Cleveland, OH, 1996), pp. 12–122.
62.
J. Lipkowski, and P. N. Ross, Structure of Electrified Interfaces (VCH, New York, 1993), p. 213.
63.
S. Walbran, A. Mazzolo, and J. W. Halley, J. Chem. Phys. (in press).
64.
J.
Lecoeur
and
J. P.
Bellier
,
Electrochim. Acta
30
,
1027
(
1985
).
65.
Handbook of Chemistry and Physics, 77th ed., edited by D. R. Lide (Chemical Rubber, Cleveland, OH, 1997), pp. 10–214.
66.
S.
Hartinger
and
K.
Doblhofer
,
J. Electroanal. Chem.
380
,
185
(
1995
).
67.
R.
Hoffmann
,
J. Chem. Phys.
39
,
1397
(
1963
).
68.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
69.
H.
Frauenfelder
and
P. G.
Wolynes
,
Science
229
,
337
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.