The relativistic Dirac Hamiltonian that describes the motion of electrons in a magnetic field contains only paramagnetic terms (i.e., terms linear in the vector potential A) while the corresponding nonrelativistic Schrödinger Hamiltonian also contains diamagnetic terms (i.e., those from an A2 operator). We demonstrate that all diamagnetic terms relativistically arise from second-order perturbation theory and that they correspond to a “redressing” of the electrons by the magnetic field. If the nonrelativistic limit is taken with a fixed no-pair Hamiltonian (no redressing), the diamagnetic term is missing. The Schrödinger equation is normally obtained by taking the nonrelativistic limit of the Dirac one-electron equation, we show why nonrelativistic use of the A2 operator is also correct in the many-electron case. In nonrelativistic approaches, diamagnetic terms are usually considered in first-order perturbation theory because they can be evaluated as an expectation value over the ground state wave function. The possibility of also using an expectation value expression, instead of a second-order expression, in the relativistic case is investigated. We also introduce and discuss the concept of “magnetically balanced” basis sets in relativistic calculations.

1.
M. M.
Sternheim
,
Phys. Rev.
128
,
676
(
1962
).
2.
P.
Pyykkö
,
Chem. Phys.
74
,
1
(
1983
).
3.
J.
Sucher
,
Phys. Rev. A
22
,
348
(
1980
).
4.
G. E.
Brown
and
D. G.
Ravenhall
,
Proc. R. Soc. London, Ser. A
208
,
552
(
1951
).
5.
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
117
,
610
(
1928
);
P. A. M.
Dirac
,
Proc. R. Soc. London, Ser. A
118
,
351
(
1928
).
6.
J. Sucher, in Relativistic, Quantum Electrodynamic and Weak Interaction Effects in Atoms (AIP Conference Proceeding 189, New York, 1989).
7.
W. H.
Furry
,
Phys. Rev.
81
,
115
(
1951
).
8.
M. H.
Mittleman
,
Phys. Rev. A
24
,
1167
(
1981
).
9.
J.-L.
Heully
,
I.
Lindgren
,
E.
Lindroth
, and
A.-M.
Mårtensson-Pendrill
,
Phys. Rev. A
33
,
4426
(
1986
).
10.
G. A.
Aucar
and
J.
Oddershede
,
Int. J. Quantum Chem.
47
,
425
(
1993
).
11.
W.
Kutzelnigg
,
Theor. Chim. Acta
73
,
173
(
1988
).
12.
J. D.
Talman
,
Phys. Rev. Lett.
57
,
1091
(
1986
).
13.
H. J. Aa.
Jensen
,
K. G.
Dyall
,
T.
Saue
, and
K.
Fægri
, Jr.
,
J. Chem. Phys.
104
,
4083
(
1996
).
14.
J.
Oddershede
,
P.
Jo/rgensen
, and
D. L.
Yeager
,
Comput. Phys. Rep.
2
,
33
(
1984
);
J.
Olsen
and
P.
Jo/rgensen
,
J. Chem. Phys.
82
,
3235
(
1985
);
P.
Jo/rgensen
,
H. J. Aa.
Jensen
, and
J.
Olsen
,
J. Chem. Phys.
89
,
3654
(
1988
).
15.
L.
Visscher
,
T.
Saue
, and
J.
Oddershede
,
Chem. Phys. Lett.
274
,
181
(
1997
).
16.
T. H.
Dunning
and
V.
McKoy
,
J. Chem. Phys.
47
,
1735
(
1967
).
17.
T.
Saue
,
K.
Fægri
, Jr.
,
T.
Helgaker
, and
O.
Gropen
,
Mol. Phys.
91
,
937
(
1997
).
18.
T. Saue and H. J. Aa. Jensen (to be published).
19.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
20.
K. G.
Dyall
and
K.
Fægri
, Jr.
,
Theor. Chim. Acta
94
,
39
(
1996
).
21.
K. G.
Dyall
,
I. P.
Grant
,
C. T.
Johnson
,
E. P.
Plummer
, and
F.
Parpia
,
Comput. Phys. Commun.
55
,
425
(
1989
).
22.
A.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
).
23.
J.
Geertsen
and
J.
Oddershede
,
Chem. Phys.
90
,
301
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.