Four two-dimensional (2D) four-wave-mixing techniques that can be used to extract information about structure and coupling patterns of interacting chromophores are proposed. These techniques have close conceptual similarities with multiple-pulse NMR spectroscopies. Closed expressions for the signals are derived by solving the nonlinear exciton equations (NEE) which describe the dynamics of multiple excitations using the one-exciton Green function and the exciton–exciton scattering matrix. Possible applications include electronic spectroscopy of aggregates, e.g., photosynthetic antenna complexes, and infrared spectroscopy of localized vibrations (e.g., amid bands in polypeptides). Model calculations are presented for three-chromophore aggregates.

1.
R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Clarendon Press, Oxford, 1987);
J. K. M. Sanders and B. K. Hunter, Modern NMR Spectroscopy (Oxford, New York, 1993).
2.
J. N. Evans, Biomolecular NMR Spectroscopy (Oxford, New York, 1995).
3.
Ultrafast Phenomena XI, edited by T. Elsasser, J. G. Fujimoto, D. Wiersma, and W. Zinth (Springer, Berlin, 1998).
4.
A. W.
Weiner
,
D. E.
Leird
,
G. P.
Weiderrecht
, and
K. A.
Nelson
,
Science
247
,
1317
(
1990
).
5.
J. X.
Tull
,
M. A.
Dugan
, and
W. S.
Warren
,
Adv. Magn. Opt. Reson.
20
,
1
(
1997
).
6.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
238
,
1
(
1995
);
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
247
,
264
(
1995
).
7.
N. F.
Scherer
,
A. J.
Ruggiero
,
M.
Du
, and
G. R.
Fleming
,
J. Chem. Phys.
93
,
856
(
1990
).
8.
M. G.
Cory
,
M. C.
Zerner
,
X.
Hu
, and
K.
Schulten
,
J. Phys. Chem. B
102
,
7640
(
1998
).
9.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).
10.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
).
11.
W. M. Zhang, V. Chernyak, and S. Mukamel, in Ultrafast Phenomena XI, edited by T. Elsasser, J. G. Fujimoto, D. A. Wiersma, and W. Zinth (Springer, Berlin, 1998), p. 663;
S. Mukamel, W. M. Zhang, and V. Chernyak, in Proceeding of the XIth International Congress on Photosynthesis, edited by G. Garab and J. Pusztai (Kluwer Academic, The Netherlands, 1998).
12.
S.
Mukamel
,
A.
Piryatinski
, and
V.
Chernyak
,
Acc. Chem. Phys.
32
,
145
(
1999
).
13.
J-Aggregates, edited by T. Kobayashi (World Scientific, Singapore, 1996).
14.
R.
van Grondelle
,
J. P.
Dekker
,
T.
Gillbro
, and
V.
Sundström
,
Biochim. Biophys. Acta
1187
,
1
(
1994
).
15.
V. Sundström and R. van Grondelle, in Anoxygenic Photosynthetic Bacteria, edited by R. E. Blankenship, M. T. Madiga, and C. E. Baner (Kluwer Academic, Dordrecht, 1995), p. 349.
16.
R. J. W.
Louwe
,
J.
Vrieze
,
A. J.
Hoff
, and
T. J.
Aartsma
,
J. Phys. Chem. B
101
,
11280
(
1997
).
17.
S. I. E. Vulto, M. A. de Baat, R. J. W. Louwe, H. P. Permentier, T. Neef, M. Miller, H. van Amerongen, and T. J. Aartsma (preprint).
18.
C. C.
Gradinaru
,
S.
Ozdemir
,
D.
Gulen
,
I. H. M.
van Stokkum
,
R.
van Grondelle
, and
H.
van Amerongen
,
Biophys. J.
75
,
3064
(
1998
).
19.
J. P.
Connelly
,
M. G.
Muller
,
M.
Hucke
,
G.
Gatzen
,
C. W.
Mullineaux
,
A. V.
Ruban
,
P.
Horton
, and
A. R.
Holzwarth
,
J. Phys. Chem. B
101
,
1902
(
1997
).
20.
C. C.
Gradinaru
,
A. A.
Pascal
,
F.
van Mourik
,
B.
Robert
,
P.
Horton
,
R.
van Grondelle
, and
H.
van Amerongen
,
Biochemistry
37
,
1143
(
1998
).
21.
T.
Pullerits
,
M.
Chachisvilis
, and
V.
Sundström
,
J. Phys. Chem.
100
,
10787
(
1996
).
22.
V.
Nagarajan
,
R. G.
Alden
,
J. C.
Williams
, and
W. W.
Parson
,
Proc. Natl. Acad. Sci. USA
93
,
13774
(
1996
).
23.
R.
Jimenez
,
F.
van Mourik
,
J. Y.
Yu
, and
G. R.
Fleming
,
J. Phys. Chem. B
101
,
7350
(
1997
).
24.
J. Y.
Yu
,
Y.
Nagasawa
,
R.
van Grondelle
, and
G. R.
Fleming
,
Chem. Phys. Lett.
280
,
404
(
1997
).
25.
T.
Joo
and
A. C.
Albrecht
,
Chem. Phys.
176
,
233
(
1993
).
26.
N. R. S.
Reddy
,
R. J.
Cogdell
,
L.
Zhao
, and
G. J.
Small
,
Photochem. Photobiol.
57
,
35
(
1993
).
27.
C. D.
Caro
,
R. W.
Visschers
,
R.
van Grondelle
, and
S.
Völker
,
J. Phys. Chem.
98
,
10584
(
1994
).
28.
X. Hu and K. Schulten, Physics Today 1997, Aug., p. 28.
29.
A. J.
Hoff
and
J.
Deisenhofer
,
Phys. Rep.
287
,
1
(
1997
).
30.
T.
Pullerits
and
V.
Sundström
,
Acc. Chem. Res.
29
,
381
(
1996
).
31.
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
);
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
Philos. Trans. R. Soc. London, Ser. A
356
,
405
(
1998
).
32.
T. E. Creighton, Proteins: Structures and Molecular Properties, 2nd ed. (Freeman, New York, 1993).
33.
S.
Krimm
and
J.
Bandeker
,
Adv. Protein Chem.
38
,
181
(
1986
).
34.
E. A. Silinsh and V. C̆ápek, Organic Molecular Crystals (American Institute of Physics, New York, 1994).
35.
W. K.
Surewicz
,
H. H.
Mantch
, and
D.
Chapman
,
Biochemistry
32
,
389
(
1993
).
36.
M.
Leckson
and
H.
Mantsch
,
Crit. Rev. Biochem. Mol. Biol.
30
,
95
(
1995
).
37.
H.
Torii
and
M.
Tasumi
,
J. Chem. Phys.
96
,
3379
(
1992
).
38.
P.
Hamm
,
M.
Lim
, and
R. M.
Hochstrasser
,
J. Phys. Chem. B
102
,
6123
(
1998
).
39.
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larson
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2702
(
1997
).
40.
S.
Mukamel
and
D. S.
Chemla
, Chem. Phys. 210 (1996) (special issue).
41.
J. C.
Deàk
,
L. K.
Iwaki
, and
D. D.
Dlott
,
J. Phys. Chem. A
102
,
8193
(
1998
);
J. C.
Deàk
,
L. K.
Iwaki
, and
D. D.
Dlott
,
Chem. Phys. Lett.
293
,
405
(
1998
).
42.
V.
Chernyak
,
W. M.
Zhang
, and
S.
Mukamel
,
J. Chem. Phys.
109
,
9587
(
1998
).
43.
F. C.
Spano
and
S.
Mukamel
,
Phys. Rev. A
40
,
5783
(
1989
);
F. C.
Spano
and
S.
Mukamel
,
Phys. Rev. Lett.
66
,
1197
(
1991
);
F. C.
Spano
and
S.
Mukamel
,
J. Chem. Phys.
95
,
7526
(
1991
).
44.
J. A.
Leegwater
and
S.
Mukamel
,
Phys. Rev. A
46
,
452
(
1992
).
45.
V.
Chernyak
,
N.
Wang
, and
S.
Mukamel
,
Phys. Rep.
263
,
213
(
1995
).
46.
O.
Kühn
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
105
,
8586
(
1996
).
47.
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Phys. Chem. B
101
,
7332
(
1997
).
48.
R.
Zwanzig
,
Lect. Theor. Phys.
3
,
106
(
1961
);
R.
Zwanzig
,
Physica (Amsterdam)
30
,
1109
(
1964
).
49.
N. Bloembergen, Nonlinear Optics (Benjamin, New York, 1965).
50.
M.
Cho
,
N. F.
Scherer
,
G. R.
Fleming
, and
S.
Mukamel
,
J. Chem. Phys.
96
,
5618
(
1992
).
51.
P.
Vöhringer
and
N. F.
Scherer
,
J. Phys. Chem.
99
,
2684
(
1995
).
52.
J. A.
Leegwater
and
S.
Mukamel
,
J. Chem. Phys.
101
,
7388
(
1994
).
53.
S.
Schmitt-Rink
,
S.
Mukamel
,
K.
Leo
,
J.
Shah
, and
D. S.
Chemla
,
Phys. Rev. A
44
,
2124
(
1991
).
54.
J.
Seth
,
V.
Palaniappan
,
R. W.
Wagner
,
T. E.
Johnson
,
J. S.
Lindsey
, and
D. F.
Bocian
,
J. Am. Chem. Soc.
118
,
11194
(
1996
);
D. L.
Jiang
and
T.
Aida
,
J. Am. Chem. Soc.
120
,
10895
(
1998
);
T. Aida (private communication).
55.
(a)
M. R.
Wasielewski
in Chlorophylls, edited by H. Scheer (Chemical Rubber, Boca Raton, 1991), pp. 269–286;
(b)
M. R.
Wasielewski
,
Chem. Rev.
92
,
435
(
1992
).
56.
In the perturbative expansion given in Appendix E we assume a slightly more general form, where the dephasing rate depends on the site Γmnnδmn.
57.
V.
Chernyak
and
S.
Mukamel
,
J. Opt. Soc. Am. B
13
,
1302
(
1996
).
58.
A. G.
Redfield
,
Adv. Magn. Reson.
1
,
1
(
1965
).
59.
W. T.
Pollard
,
A. K.
Felts
, and
R. A.
Friesner
,
Adv. Chem. Phys.
93
,
77
(
1996
).
60.
S.
Mukamel
and
R. F.
Loring
,
J. Opt. Soc. Am. B
3
,
595
(
1986
).
61.
V.
Chernyak
and
S.
Mukamel
,
Phys. Rev. B
48
,
2470
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.