We study the structural and dynamical aspects of 13–atom binary rare-gas clusters of Ar and Xe using constant–energy molecular dynamics simulations. The ground state geometry for ArnXe13−n,n=1−12, remains near-icosahedral, with an Ar atom occupying the central position. The thermodynamic properties of these clusters are significantly different from the pure 13-atom Ar or Xe clusters and for Xe–dominated compositions, melting is preceded by a surface–melting stage. Slow oscillations of the short-time-averaged (STA) temperature are observed both for surface–melting and complete melting stage, suggesting dynamical coexistence between different phases. At the complete melting stage, the oscillations in the STA temperature and the species of the central atom are correlated.

1.
J. P.
Labastie
and
R. L.
Whetten
,
Phys. Rev. Lett.
65
,
1567
(
1990
).
2.
F. G.
Amar
and
R. S.
Berry
,
J. Chem. Phys.
85
,
5943
(
1986
);
H. L. Davis J.
Jellinek
, and
R. S.
Berry
J. Chem. Phys.
86
,
6456
(
1987
);
T. L.
Beck
,
J.
Jellinek
, and
R. S.
Berry
,
J. Chem. Phys.
87
,
545
(
1987
);
J. D.
Honeycutt
and
H. C.
Andersen
,
J. Phys. Chem.
91
,
4950
(
1987
).
3.
R.
Kunz
and
R. S.
Berry
,
Phys. Rev. Lett.
71
,
3987
(
1993
).
4.
R. D.
Etters
and
J.
Kaelberer
,
Phys. Rev. A
11
,
1068
(
1975
);
R. S.
Berry
,
J.
Jellinek
, and
G.
Natanson
,
Phys. Rev. A
30
,
919
(
1984
);
C. J.
Tsai
and
K. D.
Jordan
J. Chem. Phys.
99
,
6957
(
1993
).
5.
M. J.
Lopez
,
P. A.
Marcos
, and
J. A.
Alonso
,
J. Chem. Phys.
104
,
1056
(
1996
).
6.
G. E.
Lopez
and
D. L.
Freeman
,
J. Chem. Phys.
98
,
1428
(
1993
).
7.
D. D.
Frantz
,
J. Chem. Phys.
102
,
3747
(
1995
).
8.
D. J.
Wales
and
R. S.
Berry
,
J. Chem. Phys.
92
,
4283
(
1990
).
9.
E. B.
Krissinel
and
J.
Jellinek
,
Int. J. Quantum Chem.
62
,
185
(
1997
);
E. B.
Krissinel
and
J.
Jellinek
,
Chem. Phys. Lett.
258
,
283
(
1996
);
E. B.
Krissinel
and
J.
Jellinek
,
Chem. Phys. Lett.
272
,
301
(
1997
).
10.
D. J.
Wales
,
Science
271
,
925
(
1996
);
K. D.
Ball
,
R. S.
Berry
,
R. E.
Kunz
,
F.-Y.
Li
,
A.
Proykova
, and
D. J.
Wales
,
Science
271
,
936
(
1996
).
11.
F.
Calvo
and
P.
Lebastie
,
J. Phys. Chem. B
102
,
2051
(
1998
).
12.
J. P. K.
Doye
and
D. J.
Wales
,
J. Chem. Phys.
102
,
9673
(
1995
).
13.
M.
Bixon
and
J.
Jortner
,
J. Chem. Phys.
91
,
1631
(
1989
).
14.
H.
Matsuoka
,
T.
Hirokawa
,
M.
Matsui
, and
M.
Doyama
,
Phys. Rev. Lett.
69
,
297
(
1992
).
15.
K.
Hoshino
,
T.
Naganuma
,
Y.
Yamada
,
K.
Watanabe
,
A.
Nakajima
, and
K.
Kaya
,
J. Chem. Phys.
97
,
3803
(
1992
);
L.
Zhu
,
J.
Ho
,
E. K.
Parks
, and
S. J.
Riley
,
J. Chem. Phys.
98
,
2798
(
1993
);
M. B.
Knickelbein
,
J. Chem. Phys.
99
,
2377
(
1993
).
16.
H. Haberland, Clusters of Atoms and Molecules (Springer, Berlin, 1994), and references therein.
17.
N.
Tsai
,
F. F.
Abraham
, and
G. M.
Pound
,
Surf. Sci.
77
,
465
(
1978
).
18.
D. H.
Robertson
,
F. B.
Brown
, and
I. M.
Navon
,
J. Chem. Phys.
90
,
3221
(
1989
).
19.
D. H.
Robertson
and
F. B.
Brown
,
J. Chem. Phys.
93
,
702
(
1990
).
20.
D. J.
Chartrand
,
J. C.
Shelley
, and
R. J.
Le Roy
,
J. Phys. Chem.
95
,
8310
(
1991
);
D. J.
Chartrand
,
R. J.
Le Roy
,
A.
Kumar
, and
W. J.
Meath
,
J. Chem. Phys.
98
,
5668
(
1993
).
21.
I. L.
Garzon
,
R.
Kawai
,
X. P.
Long
, and
J. H.
Weare
,
Chem. Phys. Lett.
158
,
525
(
1989
);
I. L.
Garzon
,
R.
Kawai
,
X. P.
Long
, and
J. H.
Weare
,
Z. Phys. D
12
,
81
(
1989
);
C.
Rey
and
L. J.
Gellago
,
Phys. Rev. B
51
,
13691
(
1995
);
C.
Rey
and
L. J.
Gellago
,
Phys. Rev. B
54
,
2942
(
1997
).
22.
J. A.
Alonso
,
Phys. Scr.
55
,
177
(
1994
);
V.
Bonacic-Koutecky
,
P.
Fantucci
,
C.
Fuchs
,
J.
Koutecky
, and
J.
Pitner
,
Z. Phys. D
26
,
17
(
1993
);
J. A.
Alonso
and
J. M.
Lopez
,
Int. J. Quantum Chem.
56
,
839
(
1995
).
23.
A. S.
Clarke
,
R.
Kapral
,
B.
Moore
,
G.
Patey
, and
X. G.
Wu
,
Phys. Rev. Lett.
70
,
3283
(
1993
);
A. S.
Clarke
,
R.
Kapral
, and
G. N.
Patey
,
J. Chem. Phys.
101
,
2432
(
1994
).
24.
D. D.
Frantz
,
J. Chem. Phys.
105
,
10030
(
1996
).
25.
D. D.
Frantz
,
J. Chem. Phys.
107
,
1992
(
1997
).
26.
S. K.
Nayak
and
R.
Ramaswamy
,
J. Phys. Chem.
98
,
9260
(
1994
);
S. K.
Nayak
and
R.
Ramaswamy
,
Surf. Rev. Lett.
3
,
457
(
1996
).
27.
S. K.
Nayak
,
R.
Ramaswamy
, and
C.
Chakravarty
,
Phys. Rev. Lett.
74
,
4181
(
1995
).
28.
D. D.
Frantz
,
D. L.
Freeman
, and
J. D.
Doll
,
J. Chem. Phys.
93
,
2769
(
1990
).
29.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, Cambridge, 1992).
30.
S. Sugano, Microcluster Physics (Springer, Berlin, 1991).
31.
F. A.
Lindemann
,
Physik Zeits
11
,
609
(
1910
);
S. K. Ma, Statistical Mechanics (World Scientific, Singapore, 1985).
32.
C.
Shelley
,
R. J.
Le Roy
, and
F. G.
Amar
,
Chem. Phys. Lett.
152
,
14
(
1988
).
33.
This phase-coexistence has much longer time scale than solid-liquid coexistence in Ar13 i.e., the instantaneous kinetic energy can be averaged over still longer times to give a STA temperature distribution which is bimodal (see Fig. 3). The STA temperature distribution in Ar13 becomes essentially unimodal with only 10 ps averaging. This is expected in general, in view of the greater complexity of the PES of the inhomogeneous clusters (see Ref. 12). For a comparison of time scales, note that the typical vibration period of an ArnXe13−n cluster is 1 ps.
34.
R. S.
Berry
and
R.
Kunz
,
Phys. Rev. Lett.
74
,
3951
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.