Ab initio calculations at different levels of theory [HF, MP2, MP4SDTQ, and QCISD(T)] and using different basis sets (Pople’s 6-31G**, Dunning-Huzinaga’s D95**, and Dunning’s aug-cc-pVDZ) were carried out to analyze the potential energy hypersurfaces of the cyclopropane⋯sulfur dioxide and ethylene⋯sulfur dioxide van der Waals complexes. Both the theoretical methods employed and the basis set chosen exert a great influence on the geometry and nature of the stationary points located: The MP2/aug-cc-pVDZ structures are consistent with experimental data from microwave spectroscopy. Binding energies, dipole moments, and rotational constants are in reasonable agreement with the corresponding experimental values. Calculations predict the existence of tunneling pathways between equivalent structures in accord with the experimentally observed splittings in the rotational spectra: The QCISD(T)/aug-cc-pVDZ//MP2/aug-cc-pVDZ energy barrier in the case of ethylene⋯sulfur dioxide is 48 cm−1, in good agreement with the experimental estimate (30 cm−1). For the cyclopropane⋯sulfur dioxide complex where an experimental estimate cannot be done, the computed barrier is 69 cm−1. Although covalent forces make appreciable contributions to the stabilization of both van der Waals complexes, the electrostatic component of the intermolecular interaction seems to play an especially relevant role in determining the relative orientation of the two subunits in each complex.

1.
Van der Waals Molecules, Chem. Rev. 94, 1721 (1994).
2.
P. Hobza and R. Zahradnı́k, Intermolecular Complexes. The Role of van der Waals Systems in Physical Chemistry and in Biodiscicplines (Academia Prague, 1988).
3.
A. D.
Buckingham
and
P. W.
Fowler
,
Can. J. Chem.
63
,
2018
(
1985
).
4.
A. C.
Legon
and
D. J.
Millen
,
Acc. Chem. Res.
20
,
39
(
1987
);
A. C.
Legon
,
Chem. Soc. Rev.
19
,
197
(
1990
).
5.
E. Clementi, MOTECC Modern Techniques in Computational Chemistry (Escom, Leiden, 1991).
6.
Modern Electronic Structure Theory, edited by D. R. Yarkony (World Scientific, Singapore, 1995), Parts I and II;
M.
Head-Gordon
,
J. Phys. Chem.
100
,
13213
(
1996
).
7.
A. M.
Andrews
,
K. W.
Hillig
II
, and
R. L.
Kuczkowski
,
J. Chem. Phys.
96
,
1784
(
1992
).
8.
C. A. Coulson, Valence, 2nd ed. (Oxford University Press, Oxford, 1972).
9.
A. M.
Andrews
,
A.
Taleb-Bendiab
,
M. S.
LaBarge
,
K. W.
Hillig
II
, and
R. L.
Kuczkowski
,
J. Chem. Phys.
93
,
7030
(
1990
).
10.
A. C.
Legon
and
D. J.
Millen
,
J. Am. Chem. Soc.
109
,
356
(
1987
);
A. C.
Legon
and
D. J.
Millen
,
J. Chem. Soc. Chem. Commun.
1987
,
986
.
11.
A. D.
Buckingham
and
P. W.
Fowler
,
J. Chem. Phys.
79
,
6426
(
1983
);
F. A.
Baiocchi
,
W.
Reiher
, and
W.
Klemperer
,
J. Chem. Phys.
79
,
6428
(
1983
).
12.
W. B.
De Almeida
,
Chem. Phys. Lett.
231
,
283
(
1994
);
S. M.
Resende
and
W. B.
De Almeida
,
J. Chem. Phys.
102
,
4184
(
1995
).
13.
W. J. Hehre, L. Radom, P. v. R. Scheleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley, New York, 1986).
14.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
);
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
15.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
96
,
6796
(
1992
).
16.
J. A.
Sordo
,
Comput. Phys. Commun.
113
,
85
(
1998
).
17.
GAUSSIAN 94, M. J. Frisch et al., Gaussian, Inc., Pittsburgh, PA, 1995.
18.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
19.
V. M.
Rayón
and
J. A.
Sordo
,
Theor. Chem. Acc.
99
,
68
(
1998
).
20.
S. S.
Xantheas
,
J. Chem. Phys.
104
,
8821
(
1996
).
21.
R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Oxford University Press, New York, 1990).
22.
R. G.
Bone
and
R. F. W.
Bader
,
J. Phys. Chem.
100
,
10892
(
1996
).
23.
E. D.
Glendening
and
A. J.
Streitwieser
,
J. Chem. Phys.
100
,
2900
(
1994
).
24.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).
25.
K.
Kitaura
and
K.
Morokuma
,
Int. J. Quantum Chem.
10
,
325
(
1976
).
26.
M. I.
Menéndez
,
J. A.
Sordo
, and
T. L.
Sordo
,
J. Phys. Chem.
96
,
1185
(
1992
);
R.
López
,
M. I.
Menéndez
,
D.
Suárez
,
T. L.
Sordo
, and
J. A.
Sordo
,
Comput. Phys. Commun.
76
,
235
(
1993
).
27.
See, for example (a)
D.
Suárez
,
T. L.
Sordo
, and
J. A.
Sordo
,
J. Org. Chem.
60
,
2848
(
1995
);
(b)
D.
Suárez
,
J. A.
Sordo
, and
T. L.
Sordo
,
J. Phys. Chem.
100
,
13462
(
1996
);
D. Suárez and J. A. Sordo, Chem. Commun. (Cambridge), 385 (1998).
28.
H.
Fujimoto
,
S.
Kato
,
S.
Yamabe
, and
K.
Fukui
,
J. Chem. Phys.
60
,
572
(
1974
).
29.
R. G. A.
Bone
,
C.
Ruth LeSueur
,
R. D.
Amos
, and
A. J.
Stone
,
J. Chem. Phys.
96
,
8390
(
1992
).
30.
E. P. F.
Lee
and
T. G.
Wright
,
J. Chem. Soc., Faraday Trans.
94
,
33
(
1998
).
31.
J.
Almlöf
and
P. R.
Taylor
,
J. Chem. Phys.
86
,
4070
(
1987
);
J.
Almlöf
,
T.
Helgaker
, and
P. R.
Taylor
,
J. Phys. Chem.
92
,
3029
(
1988
).
32.
K. C.
Janda
,
L. S.
Berstein
,
J. M.
Steed
,
S. E.
Novick
, and
W.
Klemperer
,
J. Am. Chem. Soc.
100
,
8074
(
1978
).
33.
B. G.
Johnson
,
P. M. W.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
).
34.
V. M.
Rayón
and
J. A.
Sordo
,
J. Chem. Phys.
107
,
7912
(
1997
).
35.
D. J.
Millen
,
Can. J. Chem.
63
,
1477
(
1985
).
36.
D. B.
Cook
,
J. A.
Sordo
, and
T. L.
Sordo
,
Int. J. Quantum Chem.
48
,
375
(
1993
);
A. T.
Pudzianowski
,
J. Chem. Phys.
102
,
8029
(
1995
);
T. A.
Ford
and
D.
Sreele
,
J. Phys. Chem.
100
,
19336
(
1996
);
P.
Süle
and
A.
Nagy
,
J. Chem. Phys.
104
,
8524
(
1996
);
K. R.
Liedl
,
S.
Sekusak
, and
E.
Mayer
,
J. Am. Chem. Soc.
119
,
3782
(
1997
);
W. A.
Herrebout
and
B. J.
van der Veken
,
J. Am. Chem. Soc.
119
,
10446
(
1997
);
K. R.
Liedl
,
J. Chem. Phys.
108
,
3199
(
1998
);
G. P.
Everaert
,
W. A.
Herrebout
,
B. J.
van der Veken
,
J.
Lundell
, and
M.
Räsänen
,
Chem.-Eur. J.
4
,
321
(
1998
).
37.
V. M.
Rayón
and
J. A.
Sordo
,
J. Phys. Chem.
101
,
7414
(
1997
).
38.
The |cr| coefficients are the absolute values of coefficients cq in Eq. (1) relative to the zero configuration coefficient, c0.
39.
J. A.
Sordo
,
J. Chem. Phys.
106
,
6204
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.