The time-dependent wave packet method has been used to calculate initial state selected reaction probabilities, reaction cross sections, and rate constants for the N++H2 reaction on the potential energy surface of Wilhelmsson, Siegbahn, and Schinke [J. Chem. Phys. 96, 8202 (1992)]. In addition to providing results that can be used to test more approximate theories, these calculations are used to shed light on a number of key issues concerning the reaction, including the correct value of the reaction endothermicity, the reactivity of excited H2 rotational states, and the lifetimes of the intermediate NH2+ complexes that are formed in collisions of N+ with H2(v=0) and H2(v=1). We also show that an earlier quasiclassical trajectory study of the reaction on the same potential energy surface predicted the wrong cross-section behavior in the threshold region as a result of an incorrect treatment of product zero-point energy.

1.
U.
Wilhelmsson
,
P. E. M.
Siegbahn
, and
R.
Schinke
,
J. Chem. Phys.
96
,
8202
(
1992
).
2.
E.
Herbst
and
W.
Klemperer
,
Astrophys. J.
185
,
505
(
1973
).
3.
E. M.
Ervin
and
P. B.
Armentrout
,
J. Chem. Phys.
86
,
2659
(
1987
).
4.
J. B.
Marquette
,
C.
Rebrion
and
B. R.
Rowe
,
J. Chem. Phys.
89
,
2041
(
1988
).
5.
L. S.
Sunderlin
and
P. B.
Armentrout
,
J. Chem. Phys.
100
,
5639
(
1994
).
6.
M. A.
Gittins
and
D. M.
Hirst
,
Chem. Phys. Lett.
65
,
507
(
1979
).
7.
M.
Gonzalez
,
A.
Aguilar
, and
Y.
Fernandez
,
Chem. Phys.
104
,
57
(
1986
).
8.
M.
Gonzalez
,
A.
Aguilar
, and
R.
Sayos
,
Chem. Phys.
132
,
137
(
1989
).
9.
U.
Wilhelmsson
and
G.
Nyman
,
J. Chem. Phys.
96
,
1886
(
1992
).
10.
G.
Nyman
and
U.
Whilhelmsson
,
J. Chem. Phys.
96
,
5198
(
1992
).
11.
D.
Gerlich
,
J. Chem. Phys.
90
,
3574
(
1989
).
12.
G.
Nyman
,
J. Chem. Phys.
96
,
3603
(
1992
).
13.
D.
Gerlich
,
J. Chem. Soc., Faraday Trans.
89
,
2199
(
1993
).
14.
P.
Tosi
,
O.
Dmitriev
,
D.
Bassi
,
O.
Wick
, and
D.
Gerlich
,
J. Chem. Phys.
100
,
4300
(
1994
).
15.
D.
Neuhauser
,
J. Chem. Phys.
100
,
9272
(
1994
).
16.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
100
,
2697
(
1994
).
17.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
101
,
1146
(
1994
).
18.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
101
,
3671
(
1994
).
19.
T.
Peng
,
D. H.
Zhang
,
J. Z. H.
Zhang
, and
R.
Schinke
,
Chem. Phys. Lett.
248
,
37
(
1996
).
20.
W.
Zhu
,
D. Y.
Wang
, and
J. Z. H.
Zhang
,
Theor. Chem. Acc.
96
,
31
(
1997
).
21.
D. H.
Zhang
,
J. Z. H.
Zhang
,
Y.
Zhang
,
D.
Wang
, and
Q.
Zhang
,
J. Chem. Phys.
102
,
7400
(
1995
).
22.
D. H.
Zhang
and
J. Z. H.
Zhang
,
J. Chem. Phys.
103
,
6512
(
1995
).
23.
W.
Zhu
,
J. Z. H.
Zhang
,
Y. C.
Zhang
,
Y. B.
Zhang
,
L. X.
Zhan
,
S. L.
Zhang
, and
D. H.
Zhang
,
J. Chem. Phys.
108
,
3509
(
1998
).
24.
W. H.
Miller
,
J. Chem. Phys.
61
,
1823
(
1974
).
25.
W. H.
Miller
,
S. D.
Schwartz
, and
J. W.
Tromp
,
J. Chem. Phys.
79
,
4889
(
1983
).
26.
D. J.
Kouri
,
Y. H.
Huang
,
W.
Zhu
, and
D. K.
Hoffman
,
J. Chem. Phys.
100
,
3662
(
1994
).
27.
See, e.g.,
R. T.
Pack
and
G. A.
Parker
,
J. Chem. Phys.
87
,
3888
(
1987
).
28.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
29.
M. D.
Feit
and
J. A.
Fleck
,
J. Chem. Phys.
78
,
301
(
1983
).
30.
D.
Wang
and
J. M.
Bowman
,
J. Phys. Chem.
98
,
7994
(
1994
).
31.
J.
Qi
and
J. M.
Bowman
,
J. Chem. Phys.
105
,
9884
(
1996
).
32.
J.
Qi
and
J. M.
Bowman
,
J. Chem. Phys.
107
,
9960
(
1997
).
33.
F. N.
Dzegilenko
and
J. M.
Bowman
,
J. Chem. Phys.
108
,
511
(
1998
).
34.
J. M.
Bowman
,
J. Phys. Chem.
102
,
3006
(
1998
).
35.
C. W. McCurdy and W. H. Miller, in ACS Series No. 56, edited by P. R. Brooks and E. F. Hayes (American Chemical Society, Washington D.C., 1977), p. 239.
36.
D. De Fazio and J. F. Castillo (unpublished).
37.
We could in principle have not made this additional approximation and implemented Eq. (17) directly within the ARA, but this would have required three separate calculations for the j=1 initial state instead of just one. Given the expense of the calculations and the large number of J values involved we did not feel that this was justified.
38.
R. D. Levine and R. B. Bernstein, Molecular Reaction Dynamics and Chemical Reactivity (Oxford University Press, Oxford, 1987), p. 60.
39.
See, e.g., M. S. Child, in Modern Gas Kinetics: Theory, Experiment and Application, edited by M. J. Pilling and I. W. M. Smith (Blackwell Scientific Publications, Oxford, 1987), p. 33.
40.
See, e.g., D. C. Clary, in Rate Coefficients in Astronomy, edited by T. J. Millar and D. A. Williams (Kluwer, Dordrecht, 1988).
41.
A more acceptable procedure would be to equate the reactant asymptote of the ground adiabatic spin-free surface with the barycentre of the N+(3P) spin-orbit levels. However, since this procedure assumes the correct endothermicity of the spin-free surface, which we shall show that the WSS surface does not have, this point is purely academic here.
42.
E. T.
Galloway
and
E.
Herbst
,
Astron. Astrophys.
211
,
413
(
1989
).
43.
P.
Tosi
,
Chem. Rev.
92
,
1667
(
1992
).
44.
D. C.
Clary
,
C. E.
Dateo
, and
D.
Smith
,
Chem. Phys. Lett.
167
,
1
(
1990
).
45.
This statement assumes that the reactants are in thermal equilibrium, which may well not be the case in the interstellar medium. It has been suggested, for example, that the high abundance of ammonia seen in certain interstellar regions implies a low-temperature rate constant for the N++H2 reaction that greatly exceeds what one would normally expect for a reaction with an endothermicity of 17 meV, and that the reason for this is that the main mechanism for producing N+(3P) in the interstellar medium (via the ion-molecule reaction He++N2N++N+He) produces highly excited N+ ions with more than enough translational energy to overcome the reaction endothermicity; these excited N+ ions will invariably encounter H2 molecules before they have had a chance to become thermalized because of the overwhelming interstellar abundance of molecular hydrogen. See
J. H.
Yee
,
S.
Lepp
, and
A.
Dalgarno
,
Mon. Not. R. Astron. Soc.
227
,
461
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.