To study the dynamics of a binary liquid mixture in glass pores we have performed a molecular dynamics simulation and measured the concentration fluctuation autocorrelation function Fm(q,t) and several other dynamic functions. The relaxation pattern of Fm may be described with an exponentially decaying diffusion term and a logarithmically decaying activation term. Although the system is at a very high temperature in the one-phase region, the results for the velocity autocorrelation functions and the mean-square displacement functions are deceptively similar to those of the bulk when the bulk is in its two-phase region. We discuss what this may mean when the pore size is very large.

1.
S. B.
Dierker
and
P.
Wiltzius
,
Phys. Rev. Lett.
58
,
1865
(
1987
).
2.
D. A.
Huse
,
Phys. Rev. B
36
,
5383
(
1987
).
3.
F.
Aliev
,
W. I.
Goldburg
, and
X-l.
Wu
,
Phys. Rev. E
47
,
R3834
(
1993
).
4.
B. J.
Frisken
and
D. S.
Cannell
,
Phys. Rev. Lett.
66
,
2754
(
1992
).
5.
P. G.
de Gennes
,
J. Phys. Chem.
88
,
6464
(
1984
).
6.
J. C.
Lee
,
Phys. Rev. E
52
,
4545
(
1995
);
J. C.
Lee
,
Phys. Rev. E
55
,
2034
(
1997
).
7.
J. C.
Lee
,
Phys. Rev. E
52
,
6368
(
1995
).
8.
J. C.
Lee
,
J. Chem. Phys.
108
,
2265
(
1998
).
9.
B. J. Berne and R. Pecora, Dynamic Light Scattering (Krieger, Malabar, FL, 1990).
10.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes (Cambridge University Press, New York, 1992).
11.
For an example of such a heterogeneous dynamics, see:
M. T.
Cicerone
and
M. D.
Ediger
,
J. Chem. Phys.
103
,
5684
(
1995
);
W.
Kolb
, et al.,
Phys. Rev. Lett.
79
,
2827
(
1997
);
M. T.
Bishop
,
K. H.
Langley
, and
F. E.
Karasz
Phys. Rev. Lett.
57
,
1742
(
1986
).
12.
J. C.
Lee
,
Physica A
243
,
229
(
1997
).
This content is only available via PDF.
You do not currently have access to this content.