The nonlocality in the path integral description of the reduced density matrix for a system interacting with a classical harmonic bath can be eliminated through the introduction of auxiliary variables, leading to Markovian equations. By contrast, the presence of an imaginary part in quantum mechanical response functions appears to prohibit similar approaches, necessitating explicit treatment of quantum nonlocality.

1.
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
2.
R.
Zwanzig
,
J. Stat. Phys.
9
,
215
(
1973
).
3.
R. P.
Feynman
and
J. F. L.
Vernon
,
Ann. Phys.
24
,
118
(
1963
).
4.
A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, New York, 1961).
5.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
6.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
7.
A. O.
Caldeira
and
A. J.
Leggett
,
Physica A
121
,
587
(
1983
).
8.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
9.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
10.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
11.
E.
Sim
and
N.
Makri
,
Chem. Phys. Lett.
249
,
224
(
1996
).
12.
E.
Sim
and
N.
Makri
,
Comput. Phys. Commun.
99
,
335
(
1997
).
13.
B.
Carmeli
and
D.
Chandler
,
J. Chem. Phys.
82
,
3400
(
1985
).
14.
M. C.
Wang
and
G. E.
Uhlenbeck
,
Rev. Mod. Phys.
17
,
323
(
1945
).
15.
E.
Pollak
and
A. M.
Berezhkovskii
,
J. Chem. Phys.
99
,
1344
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.