Matrices formed by subjecting methanol vapor diluted in argon/krypton mixtures to electron bombardment and subsequent matrix isolation (EBMI) reveal a new feature at 885.3 cm−1 which is assigned to the v3 fundamental of the triatomic cation (ArHKr)+. In samples containing about 5% krypton, the v3 fundamental of Kr2H+ is also observed in a predominantly solid argon environment. These assignments are supported by annealing experiments and by density functional theory calculations reported in a separate paper. Similar experiments with xenon diluted in argon yield infrared spectra showing the v3 and v3+v1 bands of (ArHXe)+, and v3 of Xe2H+ in predominantly argon environments. EBMI of methanol diluted in krypton in the presence of xenon gives rise to infrared bands assigned to the v3 and v3+v1 fundamentals and combination bands of both (KrHXe)+ and Xe2H+ isolated in predominantly krypton environments. The energetics and plausible mechanisms to the formation of these homogenous and mixed proton-bound rare-gas dimers are considered.

1.
V.
Aquilanti
,
A.
Galli
,
A.
Giardini-Guidoni
, and
G. G.
Volpi
,
J. Chem. Phys.
43
,
1969
(
1965
).
2.
F. C.
Fehsenfeld
,
A. L.
Schmeltekopf
, and
E. E.
Ferguson
,
J. Chem. Phys.
46
,
2802
(
1967
).
3.
N. G.
Adams
,
D. K.
Bohme
, and
E. E.
Ferguson
,
J. Chem. Phys.
52
,
5101
(
1970
).
4.
G.
Hvistendahl
,
O. W.
Saastad
, and
E.
Uggerud
,
Int. J. Mass Spectrom. Ion Processes
98
,
167
(
1990
).
5.
V. E.
Bondeybey
and
G. C.
Pimentel
,
J. Chem. Phys.
56
,
3832
(
1972
).
6.
D. E.
Milligan
and
M. E.
Jacox
,
J. Mol. Spectrosc.
46
,
460
(
1973
).
7.
C. A.
Wight
,
B. S.
Ault
, and
L.
Andrews
,
J. Chem. Phys.
65
,
1244
(
1976
).
8.
H.
Kunttu
,
J.
Seetula
,
M.
Räsänen
, and
V. A.
Apkarian
,
J. Chem. Phys.
96
,
5630
(
1992
).
9.
H. M.
Kunttu
and
J. A.
Seetula
,
Chem. Phys. Lett.
189
,
273
(
1994
).
10.
S. G.
Potapov
,
L. P.
Sukhanov
, and
G. L.
Gutsev
,
Russ. J. Phys. Chem.
63
,
479
(
1989
).
11.
M. E.
Rosenkrantz
,
Chem. Phys. Lett.
173
,
378
(
1990
).
12.
J.
Lundell
and
H.
Kunttu
,
J. Chem. Phys.
96
,
9774
(
1992
).
13.
J.
Nieman
,
E.
Kauppi
,
J.
Lundell
, and
H.
Kunttu
,
J. Chem. Phys.
98
,
8698
(
1993
).
14.
J.
Lundell
,
J. Mol. Struct.
355
,
291
(
1995
).
15.
T. D.
Fridgen
and
J. M.
Parnis
,
J. Chem. Phys.
109
,
2162
(
1998
), following paper.
16.
B. S.
Ault
,
Acc. Chem. Res.
15
,
103
(
1982
), and references therein.
17.
M.
Räsänen
,
J.
Seetula
, and
H.
Kunttu
,
J. Chem. Phys.
98
,
3914
(
1993
).
18.
T. D.
Fridgen
and
J. M.
Parnis
,
J. Phys. Chem.
101
,
5117
(
1997
).
19.
T. D. Fridgen, X. K. Zhang, J. M. Parnis, and R. E. March (unpublished).
20.
J. W.
Gauld
and
L. R.
Radom
,
J. Am. Chem. Soc.
119
,
9831
(
1997
).
21.
T. D. Fridgen and J. M. Parnis (unpublished).
22.
A. J.
Chalk
and
L. R.
Radom
,
J. Am. Chem. Soc.
119
,
7573
(
1997
).
23.
A.
Cunje
,
C. F.
Rodriquez
,
D. K.
Bohme
, and
A. C.
Hopkinson
,
J. Phys. Chem.
102
,
478
(
1998
).
24.
M. E.
Fajardo
and
V. A.
Apkarian
,
J. Chem. Phys.
85
,
5660
(
1986
).
25.
All heats of reactions were calculated from the heats of formation of the species in Eq. (5). All heats of formation were taken from S. G. Lias, J. E. Bartress, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. J. Mallard, J. Phys. Chem. Ref. Data Suppl. 17 (1988).
This content is only available via PDF.
You do not currently have access to this content.