The j-walking method, previously developed to solve quasiergodicity problems in canonical simulations, is extended to simulations in the microcanonical ensemble. The implementation of the method in the microcanonical ensemble parallels that in the canonical case. Applications are presented in the microcanonical ensemble to cluster melting phenomena for Lennard-Jones clusters containing 7 and 13 particles. Significant difficulties are encountered in achieving ergodicity when Metropolis Monte Carlo methods are applied to these systems, and the difficulties are removed by the j-walking method.
REFERENCES
1.
D. D.
Frantz
, D. L.
Freeman
, and J. D.
Doll
, J. Chem. Phys.
93
, 2769
(1990
).2.
D. D.
Frantz
, D. L.
Freeman
, and J. D.
Doll
, J. Chem. Phys.
97
, 5713
(1992
).3.
N.
Metropolis
, A.
Rosenbluth
, M. N.
Rosenbluth
, A.
Teller
, and E.
Teller
, J. Chem. Phys.
21
, 1087
(1953
).4.
5.
A.
Matro
, D. L.
Freeman
, and R. Q.
Topper
, J. Chem. Phys.
104
, 8690
(1996
).6.
A.
Dullweber
, M. P.
Hodges
, and D. J.
Wales
, J. Chem. Phys.
106
, 1530
(1997
).7.
E. M.
Pearson
, T.
Halicioglu
, and W. A.
Tiller
, Phys. Rev. A
32
, 3030
(1985
).8.
G.
Nyman
, S.
Nordholm
, and H. W.
Schranz
, J. Chem. Phys.
93
, 6767
(1990
).9.
H. W.
Schranz
, S.
Nordholm
, and G.
Nyman
, J. Chem. Phys.
94
, 1487
(1991
).10.
11.
12.
R. Kubo, Statistical Mechanics (North Holland, Amsterdam, 1965), Chap. 2.
13.
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions (Dover, New York, 1964), Chap. 6.
14.
J. L.
Lebowitz
, J. K.
Percus
, and L.
Verlet
, Phys. Rev.
153
, 250
(1967
).15.
M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley, New York, 1986).
16.
17.
18.
19.
E.
Curotto
, A.
Matro
, D. L.
Freeman
, and J. D.
Doll
, J. Chem. Phys.
108
, 729
(1998
).20.
21.
P.
Labastie
and R. L.
Whetten
, Phys. Rev. Lett.
65
, 1567
(1990
).
This content is only available via PDF.
© 1998 American Institute of Physics.
1998
American Institute of Physics
You do not currently have access to this content.