The 3.531 eV negative ion photoelectron spectra of the hydroperoxide ion and the tert-butylperoxide ion have been studied. We find HO2+ℏω351.1 nm→HO2+eEA[HO2,X̃ 2A]=1.089±0.006 eV,(CH3)3COO+ℏω351.1 nm→(CH3)3COO+eEA[(CH3)3COO,X̃ 2A]=1.196±0.011 eV. The photoelectron spectra show detachment to the ground state of the peroxyl radicals and to a low lying electronic state. The intercombination gaps are measured to be ΔE(X̃ 2A–Ã 2A)[HO2]=0.871±0.007 eV and ΔE(X̃ 2A2A)[(CH3)3COO]=0.967±0.011 eV. The gas phase acidity of (CH3)3COOH was measured in a tandem flowing afterglow-selected ion flow tube (FA-SIFT) to be ΔacidG298=363.2±2.0 kcal mol−1 and we find ΔacidH298[(CH3)3COO–H]=370.9±2.0 kcal mol−1. Use of ΔacidH298[(CH3)3COO–H] and EA[(CH3)3COO] leads to the bond energies DH298[(CH3)3COO–H]=85±2 kcal mol−1 and D0[(CH3)3COO–H]=83±2 kcal mol−1. The thermochemistry of the alkylperoxyl radicals, RO2, is reviewed. A mechanism for the rearrangement of chemically activated peroxyl radicals is proposed [RO2]X̃ 2A→[RO2]*Ã 2Aaldehydes/ketones+HO(2Π),[RO2]X̃ 2A[RO2]*Ã 2A→alkenes+HO2(X̃ 2A).

1.
P. D.
Lightfoot
,
R. A.
Cox
,
J. N.
Crowley
,
M.
Destriau
,
G. D.
Hayman
,
M. E.
Jenkin
,
G. K.
Moortgat
, and
F.
Zabel
,
Atmos. Environ., Part A
26
,
1805
(
1992
).
2.
A. C. Baldwin, in The Chemistry of Peroxides, edited by S. Patai (Wiley, New York, 1983), p. 97.
3.
A. Fish, in Organic Peroxides, edited by D. Swern (Wiley–Interscience, New York, 1970), Vol. 1.
4.
T. J.
Wallington
,
P.
Dagaut
, and
M. J.
Kurylo
,
Chem. Rev.
92
,
667
(
1992
).
5.
F.
Kirchner
and
W. R.
Stockwell
,
J. Geophys. Res.
101
,
21007
(
1996
).
6.
B. J.
Finlayson-Pitts
and
J. N.
Pitts
Jr.
,
Science
276
,
1045
(
1997
).
7.
J.
Eberhard
,
P. W.
Willalta
, and
C. J.
Howard
,
J. Phys. Chem.
100
,
993
(
1996
).
8.
J.
Eberhard
and
C. J.
Howard
,
J. Phys. Chem.
101
,
3360
(
1997
).
9.
C. K.
Westbrook
,
Chem. Industry
100
,
562
(
1992
).
10.
B. K.
Carpenter
,
J. Am. Chem. Soc.
115
,
9806
(
1993
).
11.
B. K.
Carpenter
,
J. Phys. Chem.
99
,
9801
(
1995
).
12.
A. M.
Mebel
,
E. W. G.
Diau
,
M. C.
Lin
, and
K.
Morokuma
,
J. Am. Chem. Soc.
118
,
9759
(
1996
).
13.
A.
Fahr
,
A. H.
Laufer
,
M.
Krauss
, and
R.
Osman
,
J. Phys. Chem.
101
,
4879
(
1997
).
14.
P. D.
Lightfoot
,
R. A.
Cox
,
J. N.
Crowley
,
M.
Destriau
,
G. D.
Hayman
,
M. E.
Jenkin
,
G. K.
Moortgat
, and
F.
Zabel
,
Atmos. Environ., Part A
26
,
1805
(
1992
).
15.
C. J.
Howard
,
J. Am. Chem. Soc.
102
,
6937
(
1980
).
16.
B. J.
Moss
and
W. A.
Goddard
III
,
J. Chem. Phys.
63
,
3523
(
1975
).
17.
R. A.
Bair
and
W. A.
Goddard
III
,
J. Am. Chem. Soc.
104
,
2719
(
1982
).
18.
W. A.
Goddard
III
and
L. B.
Harding
,
Annu. Rev. Phys. Chem.
29
,
363
(
1978
).
19.
J. E. Bartmess and R. T. McIver, in Gas Phase Ion Chemistry, edited by M. T. Bowers (Academic, New York, 1979), Vol. 2, p. 87.
20.
V. M.
Bierbaum
,
R. J.
Schmitt
,
C. H.
DePuy
,
R. D.
Mead
,
P. A.
Schulz
, and
W. C.
Lineberger
,
J. Am. Chem. Soc.
103
,
6262
(
1981
).
21.
J. M.
Oakes
,
L. B.
Harding
, and
G. B.
Ellison
,
J. Chem. Phys.
83
,
5400
(
1985
).
22.
K. M. Ervin and W. C. Lineberger, in Gas Phase Ion Chemistry, edited by N. G. Adams and L. M. Babcock (JAI, Greenwich, 1992), Vol. 1, p. 121.
23.
D. M.
Neumark
,
K. R.
Lykke
,
T.
Andersen
, and
W. C.
Lineberger
,
Phys. Rev. A
32
,
1890
(
1985
). EA(O)=11 784.645±0.006 cm−1 or 1.461 110±0.000 001 eV.
24.
M. W.
Siegel
,
R. J.
Celotta
,
J. L.
Hall
,
J.
Levine
, and
R. A.
Bennett
,
Phys. Rev. A
6
,
607
(
1972
).
25.
J. M.
Van Doren
,
S. E.
Barlow
,
C. H.
DePuy
, and
V. M.
Bierbaum
,
Int. J. Mass Spectrom. Ion Processes
81
,
85
(
1987
).
26.
M. S.
Robinson
,
M. L.
Polak
,
V. M.
Bierbaum
,
C. H.
DePuy
, and
W. C.
Lineberger
,
J. Am. Chem. Soc.
117
,
6766
(
1995
).
27.
R. G.
Cooks
,
J. S.
Patrick
,
T.
Kotiaho
, and
S. A.
McLuckey
,
Mass Spectrom. Rev.
13
,
287
(
1994
).
28.
T. T.
Dang
,
E. L.
Motell
,
M. J.
Travers
,
E. P.
Clifford
,
G. B.
Ellison
,
C. H.
DePuy
, and
V. M.
Bierbaum
,
Int. J. Mass Spectrom. Ion Processes
123
,
171
(
1993
).
29.
S. H. I.
Hoke
,
S. S.
Yang
,
R. G.
Cooks
,
D. A.
Hrovat
, and
W. T.
Borden
,
J. Am. Chem. Soc.
116
,
4888
(
1994
).
30.
P. C.
Engelking
,
J. Phys. Chem.
90
,
4544
(
1986
).
31.
C. T.
Wickham-Jones
,
K. M.
Ervin
,
G. B.
Ellison
, and
W. C.
Lineberger
,
J. Chem. Phys.
91
,
2762
(
1989
).
32.
M. E. Jacox, J. Phys. Chem. Ref. Data Monograph No. 3 (1994).
33.
K. H.
Becker
,
E. H.
Fink
,
P.
Langen
, and
U.
Schurath
,
J. Chem. Phys.
60
,
4623
(
1974
).
34.
R. P.
Tuckett
,
P. A.
Freedman
, and
W. J.
Jones
,
Mol. Phys.
37
,
379
(
1979
).
35.
R. P.
Tuckett
,
P. A.
Freedman
, and
W. J.
Jones
,
Mol. Phys.
37
,
403
(
1979
).
36.
G.
Chettur
and
A.
Snelson
,
J. Phys. Chem.
91
,
5873
(
1987
).
37.
J. E.
Hunziker
and
H. R.
Wendt
,
J. Chem. Phys.
64
,
3488
(
1976
).
38.
R. F. Gunion, Ph.D. thesis, University of Colorado, 1995.
39.
J.
Cooper
and
R. N.
Zare
,
J. Chem. Phys.
48
,
942
(
1968
).
40.
J. E.
Bartmess
,
J. A.
Scott
, and
R. T.
McIver
,
J. Am. Chem. Soc.
101
,
6046
(
1979
).
41.
J.
Berkowitz
,
G. B.
Ellison
, and
D.
Gutman
,
J. Phys. Chem.
98
,
2744
(
1994
).
42.
G. E.
Davico
,
V. M.
Bierbaum
,
C. H.
DePuy
,
G. B.
Ellison
, and
R. R.
Squires
,
J. Am. Chem. Soc.
117
,
2590
(
1995
).
43.
S. P.
Heneghan
and
S. W.
Benson
,
Int. J. Chem. Kinet.
15
,
815
(
1983
).
44.
R. D.
Bach
,
P. Y.
Ayala
, and
H. B.
Schlegel
,
J. Am. Chem. Soc.
118
,
12758
(
1996
).
45.
I. R.
Slagle
,
E.
Ratajczak
, and
D.
Gutman
,
J. Phys. Chem.
90
,
402
(
1986
);
V. D.
Knyazev
and
I. R.
Slagle
,
J. Phys. Chem. A
102
,
1770
(
1998
).
46.
K. A. Sahetchian, R. Rigny, J. T. De Maleissye, L. Batt, M. A. Khan, and S. Mathews, Twenty-Fourth Symposium (International) on Combustion, p. 637 (1992).
47.
J. W.
Ochterski
,
G. A.
Petersson
, and
J. A.
Montgomery
, Jr.
,
J. Chem. Phys.
104
,
2598
(
1996
).
48.
J. A.
Montgomery
Jr.
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
101
,
5900
(
1994
).
49.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, GAUSSIAN 94, Revision C2, 1996.
50.
S. N.
Foner
and
R. L.
Hudson
,
J. Chem. Phys.
36
,
2681
(
1962
).
51.
K. E. McCulloh, in Proceedings of the 25th ASMS Conference on Mass Spectroscopy and Allied Topics (Washington, D.C., 1977), p. 491. Note added in proof: M. Litorja and B. Rusic have recently measured IP(HO2)=11.352±0.007 eV and D0(HO2–H)=86.8±0.8 kcal mol−1 (J. Electron Spectrosc. Relat. Phenom., in press).
52.
J. M.
Dyke
,
N. B. H.
Jonathan
,
A.
Morris
, and
M. J.
Winters
,
Mol. Phys.
44
,
1059
(
1981
).
53.
K. Kimura, S. Katsumata, Y. Achiba, T. Yamazaki, and S. Iwata, Handbook of He I Photoelectron Spectra of Fundamental Organic Molecules (Halsted, New York, 1981).
54.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
55.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
95
,
4033
(
1991
).
See, also the 202nd National Meeting, American Chemical Society, Division of Fuel Chemistry Symposium, New York, preprints of papers Vol. 36, 1571 (1991).
56.
C.
Batich
and
W.
Adam
,
Tetrahedron Lett.
16
,
1467
(
1974
).
57.
H. E.
Hunziker
and
H. R.
Wendt
,
J. Chem. Phys.
60
,
4622
(
1974
).
58.
M. J.
Travers
,
D. C.
Cowles
, and
G. B.
Ellison
,
Chem. Phys. Lett.
164
,
449
(
1989
).
59.
K. A.
Holbrook
and
A. R. W.
Marsh
,
Trans. Faraday Soc.
63
,
643
(
1967
).
60.
C. J.
Choi
,
B.-W.
Lee
,
K.-H.
Jung
, and
E.
Tschuikow-Roux
,
J. Phys. Chem.
98
,
1139
(
1993
).
61.
J. D. Roberts and M. C. Caserio, Basic Principles of Organic Chemistry (Benjamin, Menlo Park, 1977), Table 12-3, p. 464.
62.
M. Jones Jr., Organic Chemistry (Norton, New York, 1997), Table 6.2 in Sec. 6.1.
63.
K. J.
Holstein
,
E. H.
Fink
,
J.
Wildt
,
R.
Winter
, and
F.
Zabel
,
J. Phys. Chem.
87
,
3943
(
1983
).
64.
D. S. Y.
Hsu
,
W. M.
Shaub
,
T.
Creamer
,
D.
Gutman
, and
M. C.
Lin
,
Ber. Bunsenges. Phys. Chem.
87
,
909
(
1983
).
65.
J. Berkowitz, G. B. Ellison, and D. Gutman, J. Phys. Chem. 98, 2744 (1994). We estimate the energy required to abstract a C–H to be about that of ethane, DH298[CH3CH2–H]=101.1±0.4 kcal mol−1. Table V lists the strength of the peroxy OH bond as DH298[CH3CH2OO–H]=85±2 kcal mol−1. Consequently it is endothermic by about 16 kcalmol−1 to transfer the H atom from the carbon center to an oxygen center.
66.
W. B.
Cook
,
R. H.
Hunt
,
W. N.
Shelton
, and
F. A.
Flaherty
,
J. Mol. Spectrosc.
171
,
91
(
1995
).
67.
I. R.
Slagle
,
Q.
Feng
, and
D.
Gutman
,
J. Phys. Chem.
88
,
3648
(
1984
).
68.
B. S.
Jursic
,
J. Phys. Chem.
101
,
2345
(
1997
).
69.
K.
Saito
,
R.
Ito
,
T.
Kakumoto
, and
A.
Imamura
,
J. Phys. Chem.
90
,
1422
(
1986
).
70.
S. P.
Walch
,
Chem. Phys. Lett.
215
,
81
(
1993
).
71.
G. E.
Quelch
,
M. M.
Gallo
, and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
114
,
8239
(
1992
).
72.
A. F.
Wagner
,
I. R.
Slagle
,
D.
Sarzynski
, and
D.
Gutman
,
J. Phys. Chem.
94
,
1853
(
1990
).
73.
G. E.
Quelch
,
M. M.
Gallo
,
M.
Shen
,
Y.
Xie
,
H. F.
Schaefer
III
, and
D.
Moncrieff
,
J. Am. Chem. Soc.
116
,
4953
(
1994
).
74.
I. S.
Ignatyev
,
Y.
Xie
,
W. D.
Allen
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
107
,
141
(
1997
).
75.
S. J.
Wyard
,
R. C.
Smith
, and
F. J.
Adrian
,
J. Chem. Phys.
49
,
2780
(
1968
).
76.
D. A.
Parkes
and
R. J.
Donovan
,
Chem. Phys. Lett.
36
,
211
(
1975
).
77.
P. W.
Seakins
,
M. J.
Pilling
,
J. T.
Niiranen
,
D.
Gutman
, and
L. N.
Krasnoperov
,
J. Phys. Chem.
96
,
9847
(
1992
).
78.
D.
Mihelcic
,
A.
Volz-Thomas
,
H. W.
Pätz
,
D.
Kley
, and
M.
Mihelcic
,
J. Atmos. Chem.
11
,
271
(
1990
).
79.
L. V. Gurvich, I. V. Veyts, C. B. Alcock, and V. S. Iorish, Thermodynamic Properties of Individual Substances, 4th ed. (Hemisphere, New York, 1991).
80.
N. A. Kozlov and I. B. Rabinovich, Trudy Po Khimii I Khimicheskoi Tekhnologii, 189 (1964).
81.
M. W. Chase Jr., C. A. Davies, J. R. Downey Jr., D. J. Frurip, R. A. McDonald, and A. N. Syverud, J. Phys. Chem. Ref. Data 14 (Suppl. No. 1), 1 (1985), JANAF Thermochemical Tables.
82.
L. V. Gurvich, I. V. Veyts, C. B. Alcock, and V. S. Iorish, Thermodynamic Properties of Individual Substances, 4th ed. (Hemisphere, New York, 1991).
83.
J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemistry of Organic Compounds, 2nd ed. (Chapman and Hall, New York, 1986).
84.
S. W. Benson, Thermochemical Kinetics, 2nd ed. (Wiley, New York, 1976).
85.
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
Jr.
,
J. A.
Kerr
,
J.
Troe
, and
R. T.
Watson
,
J. Phys. Chem. Ref. Data
13
,
1259
(
1984
).
86.
The correction from ΔfH298 to ΔfH0 requires a heat capacity computation and we have used an ab initio CBS-Q electronic structure calculation for this evaluation.
This content is only available via PDF.
You do not currently have access to this content.