The atomic motions responsible for features seen in the spectra of network-forming liquids above the relaxational frequency domain are conventionally described as vibrational, with the nature of the vibrational modes described either as local vibrations of the tetrahedral units of the network or as extended, phonon-like vibrations, depending on the standpoint of the observer. The validity of these apparently conflicting pictures of the atomic motions is examined by an instantaneous normal mode (INM) analysis of the network-forming liquid ZnCl2. Projections of the INM eigenvectors onto the idealized modes provides a way of quantifying the relationship between the actual and idealized modes. It is shown that individual INMs do not remotely conform to the modes envisaged in the simple pictures. Nevertheless, at the more coarse-grained level of identifying contributions to the density of states, the simple pictures do provide a qualitative guide to the character of the features which are observed. These findings apply to the modes calculated with several different models of the interactions, and appear to be fairly general. A detailed examination of the nature of the INMs which appear in the frequency domain of the boson peak observed in ZnCl2 is carried out and it is shown that these modes have a mixed acoustic wave and local torsional character.

1.
C.A.
Angell
,
J. Phys. Chem. Solids
49
,
863
(
1988
).
2.
J.P. Hansen and I.R. McDonald, Theory of Simple Liquids (Academic, New York, 1986).
3.
R.L.
McGreevy
,
Solid State Phys.
40
,
247
(
1987
);
R.L.
McGreevy
,
J. Chem. Soc., Faraday Trans. 2
83
,
1875
(
1987
).
4.
G.N.
Papatheodorou
,
J. Chem. Phys.
66
,
2893
(
1977
).
5.
E.A. Pavlatou and G.N. Papatheodorou, in Proceedings of the 8th International Symposium on Molten Salts, edited by R.J. Gale, G. Blomgren, and H. Kojima (The Electrochemical Society Inc., Pennington, 1992), Vol. PV 92-16, p. 72 (and Ref. thererein).
6.
F.
Alliota
,
G.
Maisano
,
P.
Migliardo
,
C.
Vasi
,
F.
Wanderlingh
,
G. P.
Smith
, and
R.
Triolo
,
J. Chem. Phys.
75
,
613
(
1981
).
7.
D.L.
Price
,
M.
Saboungi
,
S.
Susman
,
K.L.
Volin
, and
A.C.
Wright
,
J. Phys.: Condens. Matter
3
,
9835
(
1991
).
8.
E.A.
Pavlatou
,
P.A.
Madden
, and
M.
Wilson
,
J. Chem. Phys.
107
,
10446
(
1997
).
9.
M. J.
Lebon
,
C.
Dreyfus
,
G.
Li
,
A.
Aouadi
,
H. Z.
Cummins
, and
R. M.
Pick
,
Phys. Rev. E
51
,
4537
(
1995
).
10.
E.
Kartini
,
M. F.
Collins
,
F.
Mezei
, and
E. C.
Svensson
,
Physica B
234
,
399
(
1997
).
11.
A.
Wischnewski
,
U.
Buchenau
,
A.J.
Dianoux
,
W.A.
Kamitakahara
, and
J.L.
Zarestky
,
Phys. Rev. B
57
,
2663
(
1998
).
12.
S. R.
Elliott
,
Europhys. Lett.
19
,
201
(
1992
).
13.
A. P.
Sokolov
,
A.
Kisliuk
,
M.
Soltwisch
, and
D.
Quitmann
,
Phys. Rev. Lett.
69
,
1540
(
1992
).
14.
W. Götze p. 287 in Liquids, Freezing and the Glass Transition, Les Houches Session LI, edited by J.-P. Hansen, D. Levesque, and J. Zinn Justin (Elsevier, New York, 1991).
15.
V.K.
Malinovsky
,
V.N.
Novikov
and
A.P.
Sokolov
,
Glass Phys. Chem.
22
,
152
(
1996
).
16.
R. M.
Stratt
,
Acc. Chem. Res.
28
,
201
(
1995
).
17.
T.
Keyes
,
J. Phys. Chem.
101
,
2921
(
1997
).
18.
M. C. C.
Ribeiro
and
P. A.
Madden
,
J. Chem. Phys.
106
,
8616
(
1997
).
19.
M. C. C.
Ribeiro
and
P. A.
Madden
,
J. Chem. Phys.
108
,
3256
(
1998
).
20.
M. C. C.
Ribeiro
,
M.
Wilson
, and
P. A.
Madden
,
J. Chem. Phys.
108
,
9027
(
1998
).
21.
P. A.
Madden
and
M.
Wilson
,
Chem. Soc. Rev.
25
,
339
(
1996
).
22.
H. R.
Schober
and
C.
Oligschleger
,
Phys. Rev. B
53
,
11469
(
1996
).
23.
V.
Mazzacurati
,
G.
Ruocco
, and
M.
Sampoli
,
Europhys. Lett.
34
,
681
(
1996
).
24.
S. N.
Taraskin
and
S. R.
Elliot
,
Europhys. Lett.
39
,
37
(
1997
);
S. N.
Taraskin
and
S. R.
Elliot
,
Phys. Rev. B
56
,
8605
(
1997
).
25.
L. V.
Woodcock
,
C. A.
Angell
, and
P.
Cheeseman
,
J. Chem. Phys.
65
,
1565
(
1976
).
26.
S.
Biggin
and
J. E.
Enderby
,
J. Phys. C
14
,
3129
(
1981
).
27.
D.A.
Allen
,
R.A.
Howe
,
N.D.
Wood
, and
W.S.
Howells
,
J. Chem. Phys.
94
,
5071
(
1991
).
28.
M.
Wilson
and
P. A.
Madden
,
Phys. Rev. Lett.
72
,
3033
(
1994
);
M.
Wilson
and
P. A.
Madden
,
Phys. Rev. Lett.
80
,
532
(
1998
).
29.
P. N.
Kumta
,
P. A.
Deymier
, and
S. H.
Risbud
,
Physica B
153
,
85
(
1988
).
30.
N.C.
Pyper
,
Proc. R. Soc. London, Ser. A
352
,
89
(
1995
).
31.
M.
Wilson
,
P. A.
Madden
, and
B. J.
Costa-Cabral
,
J. Phys. Chem.
100
,
1227
(
1996
).
32.
M.C.
Abramo
and
A.
Consolo
,
Physica B
205
,
408
(
1995
).
33.
M.
Buchner
,
B. M.
Landanyi
, and
R. M.
Stratt
,
J. Chem. Phys.
97
,
8522
(
1992
).
34.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University Press, Cambridge, 1989).
35.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
, and
I.
Ohmine
,
J. Chem. Phys.
100
,
6672
(
1994
).
36.
S. D.
Bembenek
and
B. B.
Laird
,
J. Chem. Phys.
104
,
5199
(
1996
).
37.
M.
Wilson
,
P. A.
Madden
,
M.
Hemmati
, and
C. A.
Angell
,
Phys. Rev. Lett.
77
,
4023
(
1996
).
38.
M.
Wilson
and
P. A.
Madden
,
J. Phys.: Condens. Matter
5
,
6833
(
1993
).
39.
U.
Buchenau
,
M.
Prager
,
N.
Nucker
,
A. J.
Dianoux
,
N.
Ahmad
, and
W. A.
Phillips
,
Phys. Rev. B
34
,
5665
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.